备考2020年高考数学一轮复习:52 曲线与方程(理科专用)

年级: 学科: 类型: 来源:91题库

一、单选题(共11小题)

1、已知点A(3,0),B(﹣3,0),|AC|﹣|BC|=4,则点C轨迹方程是(   )
A . =1(x<0) B . =1 C . =1(x>0) D . =0(x<0)
2、已知过点(0,1)的直线与圆x2+y2=4相交于A、B两点,若 ,则点P的轨迹方程是(   )
A . B . x2+(y﹣1)2=1   C . D . x2+(y﹣1)2=2
3、平面内,到两定点 的距离之差的绝对值等于 的点 的轨迹是(    )
A . 椭圆 B . 线段 C . 双曲线 D . 两条射线
4、设 为坐标原点,动点 在圆 上,过 轴的垂线,垂足为 ,点 满足 ,则点 的轨迹方程为(    )
A . B . C . D .
5、已知椭圆 的左、右焦点分别为 是椭圆上任意一点,从任一焦点引 的外角平分线的垂线,垂足为 ,则点 的轨迹为( )
A . B . 椭圆 C . 双曲线 D . 抛物线
6、若动点 与两定点 的连线的斜率之积为常数 ,则点 的轨迹一定不可能是(   )
A . 两点外的圆 B . 两点外的椭圆 C . 两点外的双曲线 D . 两点外的抛物线
7、已知点 ,直线 相交于点 ,且它们的斜率之积为 .则动点 的轨迹方程为(   )
A . B .   C . D .
8、直角坐标系 中,已知两点 ,点 满足 ,其中 ,且 .则点 的轨迹方程为(    )
A . B . C . D .
9、以 为圆心的两圆均过 ,与 轴正半轴分别交于 ,且满足 ,则点 的轨迹是(   )
A . 直线 B . C . 椭圆 D . 双曲线
10、动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为( )
A . y2-12x+12=0 B . y2+12x-12=0 C . y2+8x=0 D . y2-8x=0
11、已知正方体 的棱长为 ,定点 在棱 上(不在端点 上),点 是平面 内的动点,且点 到直线 的距离与点 到点 的距离的平方差为 ,则点 的轨迹所在的曲线为(   )
A . B . 椭圆 C . 双曲线 D . 抛物线

二、填空题(共6小题)

1、已知椭圆方程为 ,M是椭圆上一动点, 是左、右两焦点,由 的外角平分线作垂线,垂足为N,则N点的轨迹方程为      .
2、已知圆 及一点 在圆 上运动一周, 的中点 形成轨迹 的方程为      
3、公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中 ,动点 满足 ,若点 的轨迹为一条直线,则       ;若 ,则点 的轨迹方程为      
4、由动点 引圆 的两条切线 ,切点分别为 ,若 ,则 点的轨迹方程是      
5、在平面直角坐标系中,A(a,0),D(0,b),a≠0,C(0,﹣2),∠CAB=90°,D是AB的中点,当A在x轴上移动时,a与b满足的关系式为      ;点B的轨迹E的方程为      
6、已知BC是圆x2+y2=25的动弦且|BC|=6,则BC的中点的轨迹方程是      

三、解答题(共4小题)

1、在△ABC中,已知|BC|=4,且 ,求点A的轨迹方程,并说明轨迹是什么图形.
2、已知动点M(x,y)到直线l:x=3的距离是它到点D(1,0)的距离的 倍.
(1)求动点M的轨迹C的方程;
(2)设轨迹C上一动点T满足: =2λ +3μ ,其中P、Q是轨迹C上的点,且直线OP与OQ的斜率之积为﹣ .若N(λ,μ)为一动点,F1(﹣ ,0)、F2 ,0)为两定点,求|NF1|+|NF2|的值.
3、已知圆M: 和点 ,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC的斜率分别是k1 , k2 , 满足k1•k2=9,求△ABC面积的最大值.
4、已知点P与两个定点O(0,0),A(-3,0)距离之比为 .
(1)求点P的轨迹C方程;
(2)求过点M(2,3)且被轨迹C截得的线段长为2 的直线方程.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 备考2020年高考数学一轮复习:52 曲线与方程(理科专用)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;