2017年中考备考专题复习:二次函数

年级:中考 学科:数学 类型: 来源:91题库

一、单选题(共12小题)

1、已知二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是( )

A . (1,0) B . (-1,0) C . (2,0) D . (-2,0)
2、 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是(    )


A . -1<x<5 B . x>5 C . x<-1且x>5 D . x<-1或x>5
3、在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是(  )

A . y=﹣(x﹣ 2 B . y=﹣(x+ 2 C . y=﹣(x﹣ 2 D . y=﹣(x+ 2+
4、下列函数中,满足y的值随x的值增大而增大的是(  )

A . y=﹣2x B . y=3x﹣1 C . y= D . y=x2
5、已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是(  )

A . 当a=1时,函数图象过点(﹣1,1) B . 当a=﹣2时,函数图象与x轴没有交点 C . 若a>0,则当x≥1时,y随x的增大而减小 D . 若a<0,则当x≤1时,y随x的增大而增大
6、以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是(  )

A . b≥ B . b≥1或b≤﹣1 C . b≥2 D . 1≤b≤2
7、二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是(  )

A . y=(x﹣1)2+2 B . y=(x﹣1)2+3 C . y=(x﹣2)2+2 D . y=(x﹣2)2+4
8、一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )

A . B . C . D .
9、

一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为(  )


A . B . C . D .
10、已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,其中 , 则(m﹣1)2+(n﹣1)2的最小值是(  )

A . 6 B . 3 C . ﹣3 D . 0
11、某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是(  )

A . B . C . D .
12、抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是(  )
A . 4 B . 6 C . 8 D . 10

二、填空题(共5小题)

1、如果函数是关于x的二次函数, 则k=      

2、

如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 , 交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C6 , 若点P(11,m)在第6段抛物线C6上,则m=      


3、已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是      

4、直线y=kx+b与抛物线y= x2交于A(x1 , y1)、B(x2 , y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为      

5、已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:

①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣

其中结论错误的是       (只填写序号).

三、综合题(共6小题)

1、

在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.


(1)试求抛物线的解析式;

(2)记抛物线顶点为D,求△BCD的面积;

(3)若直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

2、

正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.


(1)建立适当的平面直角坐标系,

①直接写出O、P、A三点坐标;

②求抛物线L的解析式;

(2)求△OAE与△OCE面积之和的最大值.

3、

在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:


(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;

(2)是否存在x的值,使得QP⊥DP?试说明理由.

4、

如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;

(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

5、

如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b=      ,c=      ,点B的坐标为      ;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

6、

如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;

(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;

(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?

(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年中考备考专题复习:二次函数

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;