2017高考数学备考复习(理科)专题十八:统计与统计案例
年级:高考 学科:数学 类型: 来源:91题库
一、单选题(共15小题)
设 ,
,
,
是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )

雄性 | 雌性 | 总计 | |
敏感 | 50 | 25 | 75 |
不敏感 | 10 | 15 | 25 |
总计 | 60 | 40 | 100 |
由
附表:
P( | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
则下列说法正确的是( )
























年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
根据以上样本数据,她建立了身高 y (cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83 cm;
④儿子年龄增加1周岁,身高约增加 7.19 cm.
其中,正确结论的个数是()
非统计专业 | 统计专业 | |
男 | 13 | 10 |
女 | 7 | 20 |
为了判断选修统计专业是否与性别有关,根据表中数据,得 ,因为
,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为( )
一批产品抽50件测试,其净重介于13克与19克之间,将测试结果按如下方式分成六组:第一组,净重大于等于13克且小于14克;第二组,净重大于等于14克且小于15克;…第六组,净重大于等于18克且小于19克.如图是按上述分组方法得到的频率分布直方图.设净重小于17克的产品数占抽取数的百分比为x,净重大于等于15克且小于17克的产品数为y,则从频率分布直方图中可分析出x和y分别为( )
为了研究某高校大学5000名新生的视力情况,随机地抽查了该校100名进校新生的视力情况,得到其频率分布直方图如右图,若规定视力低于5.0的学生属[于近视学生,则估计该校新生中不是近视的人数约为( )
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481.



7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
二、填空题(共5小题)

甲 | 乙 | 丙 | 丁 | |
散点图 | ||||
残差平方和 | 115 | 106 | 124 | 103 |
则 同学的试验结果体现拟合A , B两变量关系的模型拟合精度最高.
患慢性气管炎 | 未患慢性气管炎 | 合计 | |
吸烟 | 43 | 162 | 205 |
不吸烟 | 13 | 121 | 134 |
合计 | 56 | 283 | 339 |
根据列联表数据,求得K2 = .
气温(℃) | 14 | 12 | 8 | 6 |
用电量(度) | 22 | 26 | 34 | 38 |
由表中数据得线性方程=
+
x中
=﹣2,据此预测当气温为5℃时,用电量的度数约为
三、综合题(共3小题)
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系,试求:
线性回归方程 .
求 并说明模型的拟合效果.
男公务员 | 女公务员 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为 .
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
四、解答题(共2小题)
某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.
(1)求第五、六组的频数,补全频率分布直方图;
(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是
75作为代表,试估计该校高一学生历史成绩的平均分;
(3)估计该校高一学生历史成绩在70~100分范围内的人数.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.