2016-2017学年山东省东营市广饶县乐安中学九年级上学期期中数学试卷
年级:九年级 学科:数学 类型:期中考试 来源:91题库
一、选择题(共10小题)
1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正确的是( )
A . ①②
B . 只有①
C . ③④
D . ①④
2、下列说法正确的是( )
A . 平分弦的直径垂直于弦
B . 半圆(或直径)所对的圆周角是直角
C . 相等的圆心角所对的弧相等
D . 若两个圆有公共点,则这两个圆相交
3、若
是反比例函数,则a的取值为( )

A . 1
B . ﹣1
C . ±l
D . 任意实数
4、如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是( )
A . 60°
B . 90°
C . 100°
D . 120°
5、下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是( )
A . 没有交点
B . 只有一个交点,且它位于y轴右侧
C . 有两个交点,且它们均位于y轴左侧
D . 有两个交点,且它们均位于y轴右侧
6、下列关于位似图形的表述:
①相似图形一定是位似图形,位似图形一定是相似图形;
②位似图形一定有位似中心;
③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;
④位似图形上任意两点与位似中心的距离之比等于位似比.
其中正确命题的序号是( )
A . ②③
B . ①②
C . ③④
D . ②③④
7、如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣
、y=
的图象交于B、A两点,则∠OAB的大小的变化趋势为( )


A . 逐渐变小
B . 逐渐变大
C . 时大时小
D . 保持不变
8、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为( )
A . 4m
B . 5m
C . 6m
D . 8m
9、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A . 2.3
B . 2.4
C . 2.5
D . 2.6
10、如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的
后得到线段CD,则端点C的坐标为( )

A . (3,3)
B . (4,3)
C . (3,1)
D . (4,1)
二、填空题(共8小题)
1、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB= .
2、二次函数y=ax2+bx+c图象上部分点的坐标满足下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
则该函数图象的顶点坐标为 .
3、已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数 .
4、如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=
的图象交于A,B两点,则四边形MAOB的面积为 .

5、如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为 m.
6、如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为 .
7、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是 度.
8、如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1 , 将C1向右平移得C2 , C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A . ﹣2<m<
B . ﹣3<m<﹣
C . ﹣3<m<﹣2
D . ﹣3<m<﹣



三、解答题(共6小题)
1、在13×13的网格图中,已知△ABC和点M(1,2).
(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;
(2)写出△A′B′C′的各顶点坐标.
2、如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=
的图象上,过点A的直线y=x+b交x轴于点B.

(1)求k和b的值;
(2)求△OAB的面积.
3、如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
4、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=
(k>0)刻画(如图所示).

(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
5、如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:
(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC= ;当点D是BC边上任意一点时,S△ABD:S△ABC= (用图中已有线段表示).
探索研究:
(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想
+
+
的值,并说明理由.



6、如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴交于D、E两点.
(1)求m的值.
(2)求A、B两点的坐标.
(3)点P(a,b)(﹣3<a<1)是抛物线上一点,当△PAB的面积是△ABC面积的2倍时,求a,b的值.