2015-2016学年辽宁省营口市大石桥二中高二下学期期中数学试卷 (理科)

年级:高二 学科:数学 类型:期中考试 来源:91题库

一、选择题(共12小题)

1、用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是(  )

A . 三角形的内角至少有一个钝角 B . 三角形的内角至少有两个钝角 C . 三角形的内角没有一个钝角 D . 三角形的内角没有一个钝角或至少有两个钝角
2、从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数

均为偶数”,则P(B|A)=(  )

A . B . C . D .
3、用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(   )
A . (k+1)2+2k2 B . (k+1)2+k2 C . (k+1)2 D .
4、若集合P={﹣2,0,2},i是虚数单位,则(   )
A . 2i∈P B . ∈P C . i)2∈P D . ∈P
5、已知全集U={1,2,3,4,5},集合A={1,2,3},B={2,4},则(∁UA)∪B为(   )
A . {4} B . {2,4,5} C . {1,2,3,4} D . {1,2,4,5}
6、若b<a<0,则下列结论不正确的是(   )
A . a2<b2 B . ab<b2 C . D . |a|﹣|b|=|a﹣b|
7、阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写(   )

A . i<3 B . i<4 C . i<5 D . i<6
8、5位老师去听同时上的4节课,每位老师可以任选其中的一节课,不同的听法有(   )
A . 54 B . 5×4×3×2 C . 45 D . 4×3×2×1
9、已知x、y满足条件 则2x+4y的最小值为(   )
A . 6 B . ﹣6 C . 12 D . ﹣12
10、

下列函数中,图像的一部分如图所示的是(   )

A . y=sin(x+ B . y=sin(2x﹣ )   C . y=cos(4x﹣ D . y=cos(2x﹣
11、(3x+ 8(n∈N+)的展开式中含有常数项为第(   )项.
A . 4 B . 5 C . 6 D . 7
12、已知f(x)=x3+3x2﹣mx+1在[﹣2,2]上为单调增函数,则实数m的取值范围为(   )
A . m≤﹣3 B . m≤0 C . m≥﹣24 D . m≥﹣1

二、填空题(共4小题)

1、二项展开式(2x﹣1)10中x的奇次幂项的系数之和为      
2、已知x∈(0,+∞)有下列各式:x+ ≥2,x+ = + + ≥3,x+ = + + + ≥4成立,观察上面各式,按此规律若x+ ≥5,则正数a=      
3、如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有      种.(以数字作答)

4、已知函数f(x)=x2﹣2ax﹣2alnx(a∈R),则下列说法正确的是      

①当a<0时,函数y=f(x)有零点;

②若函数y=f(x)有零点,则a<0;

③存在a>0,函数y=f(x)有唯一的零点;

④若函数y=f(x)有唯一的零点,则a≤1.

三、解答题(共6小题)

1、在△ABC中,角A、B、C所对的边分别为a、b、c,且tanA=2
(1)求sin2 +cos2A的值;
(2)若a= ,求bc的最大值.
2、对某个品牌的U盘进行寿命追踪调查,所得情况如下面频率分布直方图所示.

(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个U盘,寿命为1030万次之间的应抽取几个;
(3)从(2)中抽出的寿命落在1030万次之间的元件中任取2个元件,求事件“恰好有一个寿命为1020万次,一个寿命为2030万次”的概率.
3、如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,

(1)求证:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD满足什么条件时,有PC⊥BD.
4、已知数列{an}的前n项和为Sn , 点(n, )在直线y= x+ 上.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设bn= ,求数列{bn}的前n项和为Tn , 并求使不等式Tn 对一切n∈N*都成立的最大正整数k的值.

5、学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球.乙箱子里装有1个白球、2个黑球.每次游戏从这两个箱子里随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏结束后,①摸出3个白球的概率?②获奖的概率?
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).
6、设函数f(x)= x2+ax﹣lnx(a∈R).
(1)当a=1时,求函数f(x)的极值;
(2)当a>1时,讨论函数f(x)的单调性;
(3)若对任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年辽宁省营口市大石桥二中高二下学期期中数学试卷 (理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;