2016-2017学年江西省抚州市高二上学期期末数学试卷(理科)

年级:高二 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、如图程序输出的结果是(   )

A . 3,4 B . 4,4 C . 3,3 D . 4,3
2、命题:“∃x0>0,使2 >10”,这个命题的否定是(   )
A . ∀x>0,使2x>10  B . ∀x>0,使2x≤10  C . ∀x≤0,使2x≤10  D . ∀x≤0,使2x>10
3、如图所示的流程图,最后输出n的值是(   )

A . 3 B . 4 C . 5 D . 6
4、表是某工厂1﹣4月份用电量(单位:万度)的一组数据

月份x

1

2

3

4

用电量y

4.5

4

3

2.5

由表可知,用电量y与月份x之间有较好的线性相关关系,其线性回归直线方程是 ═﹣0.6x+a,则a等于(   )

A . 5.1 B . 4.8 C . 5 D . 5.2
5、由经验得知,在学校食堂某窗口处排队等候打饭的人数及其概率如下:

排队人数

0

1

2

3

4

5人以上

概率

0.1

0.16

0.3

0.3

0.1

0.04

则至多2个人排队的概率为(   )

A . 0.56 B . 0.44 C . 0.26 D . 0.14
6、“0<m<3”是“方程 =1表示离心率大于 的椭圆”的(   )
A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件
7、在一次马拉松比赛中,30名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编号为1﹣30号,再用系统抽样方法从中抽取6人,则其中成绩在区间[130,151]上的运动员人数是(   )
A . 3 B . 4 C . 5 D . 6
8、设函数f(x)= (x>0),记f1(x)=f(x),f2(x)=f(f1(x)),fn+1(x)=f[fn(x)].则f2017(x)等于(   )
A . B . C . D .
9、三棱锥S﹣ABC中,∠ASB=∠ASC=90°,∠BSC=60°,SA=SB=SC=2,点G是△ABC的重心,则| |等于(   )
A . 4 B . C . D .
10、三棱锥S﹣ABC中,∠ASB=∠ASC=90°,∠BSC=60°,SA=SB=SC=2,点G是△ABC的重心,则| |等于(   )
A . 4 B . C . D .
11、下列命题:

①“若a2<b2 , 则a<b”的否命题;

②“全等三角形面积相等”的逆命题;

③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;

④“若 x(x≠0)为有理数,则x为无理数”的逆否命题.

其中正确的命题是(   )

A . ③④ B . ①③ C . ①② D . ②④
12、如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1B1BA,且AA1=AB=BC=2,则AC与平面A1BC所成角为(   )

A . B . C . D .
13、已知F1、F2是双曲线C: =1(a>0,b>0)的左右焦点,P是双曲线C上一点,且|PF1|+|PF2|=6a,△PF1F2的最小内角为30°,则双曲线C的离心率e为(   )
A . B . 2 C . D .

二、填空题(共4小题)

1、已知平面β的法向量是(2,3,﹣1),直线l的方向向量是(4,λ,﹣2),若l∥β,则λ的值是      
2、命题“∃x∈(0,+∞),x2﹣3ax+9<0”为假命题,则实数a的取值范围为      
3、已知椭圆具有性质:若M,N是椭圆C: =1(a>b>0且a,b为常数)上关于y轴对称的两点,P是椭圆上的左顶点,且直线PM,PN的斜率都存在(记为kPM , kPN),则kPM•kPN= .类比上述性质,可以得到双曲线的一个性质,并根据这个性质得:若M,N是双曲线C: =1(a>0,b>0)上关于y轴对称的两点,P是双曲线C的左顶点,直线PM,PN的斜率都存在(记为kPM , kPN),双曲线的离心率e= ,则kPM•kPN等于      
4、已知△ABC是一个面积较大的三角形,点P是△ABC所在平面内一点且 + +2 = ,现将3000粒黄豆随机抛在△ABC内,则落在△PBC内的黄豆数大约是      

三、解答题(共6小题)

1、设命题p:m∈{x|x2+(a﹣8)x﹣8a≤0},命题q:方程 =1表示焦点在x轴上的双曲线.
(1)若当a=1时,命题p∧q假命题,p∨q”为真命题,求实数m的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.
2、调查某车间20名工人的年龄,第i名工人的年龄为ai,具体数据见表:

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ai

29

28

30

19

31

28

30

28

32

31

30

31

29

29

31

32

40

30

32

30

(1)作出这20名工人年龄的茎叶图;
(2)求这20名工人年龄的众数和极差;
(3)执行如图所示的算法流程图(其中 是这20名工人年龄的平均数),求输出的S值.

3、已知数列{an}满足a1=2,an+1= (n∈N+).
(1)计算a2 , a3 , a4 , 并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.
4、四棱锥P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.

(1)求异面直线AB、PC所成角的余弦值;
(2)点E是线段AB的中点,求二面角E﹣PC﹣D的大小.
5、已知椭圆C: =1(a>b>0)的离心率e= ,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).
(1)求椭圆C的方程;
(2)若P、Q分别是AB、椭圆C上的动点,且 (λ<0),求实数λ的取值范围.
6、已知椭圆C: =1(a>b>0)的离心率e= ,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).
7、已知抛物线C1:y2=2px(p>0)与双曲线C2 =1(a>0.b>0)有公共焦点F,且在第一象限的交点为P(3,2 ).
(1)求抛物线C1 , 双曲线C2的方程;
(2)过点F且互相垂直的两动直线被抛物线C1截得的弦分别为AB,CD,弦AB、CD的中点分别为G、H,探究直线GH是否过定点,若GH过定点,求出定点坐标;若直线GH不过定点,说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年江西省抚州市高二上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;