2016-2017学年北京市朝阳区高三上学期期末数学试卷(理科)

年级:高三 学科:数学 类型:期末考试 来源:91题库

一、选择题:(共8小题)

1、已知全集U=R,集合A={x|2x<1},B={x|x﹣2<0},则(∁UA)∩B=(   )
A . {x|x>2} B . {x|0≤x<2} C . {x|0<x≤2} D . {x|x≤2}
2、在复平面内,复数 对应的点位于(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
3、下列函数中,既是偶函数,又在区间[0,1]上单调递增的是(   )
A . y=cosx B . y=﹣x2 C . D . y=|sinx|
4、若a>0,且a≠1,则“函数y=ax在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的(   )
A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
5、从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是(   )
A . 6 B . 8 C . 10 D . 12
6、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为(   )

A . B . C . D . 4
7、在Rt△ABC中,∠A=90°,点D是边BC上的动点,且| |=3,| |=4, (λ>0,μ>0),则当λμ取得最大值时,| |的值为(   )
A . B . 3 C . D .
8、某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是(   )
A . 23 B . 20 C . 21 D . 19

二、填空题:(共6小题)

1、已知双曲线 的一条渐近线方程为3x+2y=0,则b等于      
2、已知等差数列{an}的前n项和为Sn . 若a1=2,S2=a3 , 则a2=      ,S10=      
3、执行如图所示的程序框图,则输出S的结果为      

4、在△ABC中,已知 ,则∠C=      
5、设D为不等式组 表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是       的取值范围是      
6、若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q都是封闭的.对于封闭的集合M(M⊆R),f:M→M是从集合到集合的一个函数,

①如果都有f(x+y)=f(x)+f(y),就称是保加法的;

②如果∀x,y∈M都有f(xy)=f(x)•f(y),就称f是保乘法的;

③如果f既是保加法的,又是保乘法的,就称f在M上是保运算的.

在上述定义下,集合       封闭的(填“是”或“否”);若函数f(x)在Q上保运算,并且是不恒为零的函数,请写出满足条件的一个函数f(x)=      

三、解答题:(共6小题)

1、已知函数f(x)=2 sinxcosx+2cos2x﹣1

(Ⅰ)求f(x)的最小正周期;

(Ⅱ)求f(x)在区间[﹣ ]上的最大值和最小值.

2、甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:

甲:8281797895889384

乙:9295807583809085

(Ⅰ)用茎叶图表示这两组数据;

(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;

(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望Eξ.

3、在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2.

(Ⅰ)求证:AC∥平面DEF;

(Ⅱ)若二面角D﹣AB﹣E为直二面角,

( i)求直线AC与平面CDE所成角的大小;

( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,请说明理由.

4、已知椭圆 上的动点P与其顶点 不重合.

(Ⅰ)求证:直线PA与PB的斜率乘积为定值;

(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

5、设函数f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)ex+ax2 , a∈R.

(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;

(Ⅱ)若函数g(x)有两个零点,试求a的取值范围;

(Ⅲ)证明f(x)≤g(x)

6、设m,n(3≤m≤n)是正整数,数列Am:a1 , a2 , …,am , 其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak , 则称数列Am是“好数列”.

(Ⅰ)当m=6,n=100时,

(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?

(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?

(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年北京市朝阳区高三上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;