浙教版八年级下册第6章 6.2反比例函数的图像和性质 同步练习

年级:八年级 学科:数学 类型:同步测试 来源:91题库

一、单选题(共15小题)

1、若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在(  )

A . 第一、二象限 B . 第一、三象限 C . 第二、三象限 D . 第二、四象限
2、对于函数y=﹣ , 下列结论错误的是(  )

A . 当x>0时,y随x的增大而增大 B . 当x<0时,y随x的增大而增大 C . 当x=1时的函数值大于x=﹣1时的函数值 D . 在函数图象所在的象限内,y随x的增大而增大
3、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是(  )
A . y1<y2 B . y1=y2 C . y1>y2 D . 无法确定
4、如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为(  )

A . y= B . y= C . y=﹣ D . y=﹣
5、下列四个点,在反比例函数y= 的图像上的是(   )

A . (1,﹣6) B . (2,4) C . (3,﹣2) D . (﹣6,﹣1)
6、对于反比例函数y= (k≠0),下列说法不正确的是(   )
A . 它的图像分布在第一、三象限 B . 点(k,k)在它的图像上 C . 它的图像关于原点对称 D . 在每个象限内y随x的增大而增大
7、对于反比例函数y= (k≠0),下列说法不正确的是(   )
A . 它的图像分布在第一、三象限 B . 点(k,k)在它的图像上 C . 它的图像关于原点对称 D . 在每个象限内y随x的增大而增大
8、如图,函数y=k(x+1)与 (k<0)在同一坐标系中,图像只能是下图中的(   )

A . B . C . D .
9、如图,直线y=mx与双曲线y= 交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若SABM=2,则k的值为(   )

A . ﹣2 B . 2 C . 4 D . ﹣4
10、若M(﹣2,y1),N(﹣1,y2),P(2,y3)三点都在函数y= (k<0)的图像上,则y1 , y2 , y3的大小关系是(   )

A . y3>y1>y2 B . y3>y2>y1 C . y1>y2>y3 D . y2>y1>y3
11、如图,点P是x轴正半轴上的一动点,过点P作x轴的垂线,交双曲线y= 于点Q,连接OQ.当点P沿x轴的正方向运动时,Rt△QOP的面积(   )

A . 逐渐增大 B . 逐渐减小 C . 保持不变 D . 无法确定
12、如图,P为反比例函数y= 的图像上一点,PA⊥x轴于点A,△PAO的面积为6,则下列各点中也在这个反比例函数图象上的是( )

A . (2,3) B . (﹣2,6) C . ( 2,6 ) D . (﹣2,3)
13、关于反比例函数y=﹣ ,下列说法正确的是(   )
A . 图像在第一、三象限 B . 图像经过(2,1) C . 在每个象限中,y随x的增大而减小 D . 当x>1时,﹣2<y<0
14、函数y=mx+n与y= ,其中m≠0,n≠0,那么它们在同一坐标系中的图像可能是(   )

A . B . C . D .
15、如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是(   )

A . 4 B . 2 C . D .
16、函数 y=ax2+a与 y= ( a≠0)在同一坐标系中的图象可能是图中的(   )
A . B . C . D .

二、填空题(共5小题)

1、反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连接BC、OC,S△BOC=3,则k=       .

2、已知反比例函数y=﹣ , 则有

①它的图象在一、三象限:

②点(﹣2,4)在它的图象上;

③当l<x<2时,y的取值范围是﹣8<y<﹣4;

④若该函数的图象上有两个点A (x1 , y1),B(x2 , y2),那么当x1<x2时,y1<y2

以上叙述正确的是       

3、反比例函数 ,在每个象限内,y随x的增大而增大,则m的取值范围是      
4、如图,点P、Q是反比例函数y= 图像上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1      S2 . (填“>”或“<”或“=”)

5、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为      

6、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为      

三、解答题(共5小题)

1、已知反比例函数y=的图象经过点(﹣1,﹣2).

(1)求y与x的函数关系式;

(2)若点(2,n)在这个图象上,求n的值

2、

如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.

(1)求点C的坐标;

(2)若点P是反比例函数图象上的一点且SPAD=S正方形ABCD;求点P的坐标.

3、

如图,点A在双曲线y= (x>0)上,过点A作AC⊥x轴,垂足为C,线段OA的垂直平分线BD交x轴于点B,△ABC的周长为4,求点A的坐标.

4、

在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.

5、已知反比例函数y= (k为常数,k≠0)的图象经过点A(2,3).

(Ⅰ)求这个函数的解析式;

(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;

(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙教版八年级下册第6章 6.2反比例函数的图像和性质 同步练习

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;