2015-2016学年河南省周口市沈丘县高二下学期期中数学试卷(理科)

年级:高二 学科:数学 类型:期中考试 来源:91题库

一、选择题(共12小题)

1、在“近似替代”中,函数f(x)在区间[xixi+1]上的近似值(  )
A . 只能是左端点的函数值f(xi B . 只能是右端点的函数值f(xi+1 C . 可以是该区间内的任一函数值f(ξi)(ξi∈[xixi+1]) D . 以上答案均正确
2、f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为(  )

A . (﹣1,0)∪(1,+∞)   B . (﹣1,0)∪(0,1) C . (﹣∞,﹣1)∪(1,+∞) D . (﹣∞,﹣1)∪(0,1)
3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是(  )
A . 假设三内角都不大于60度 B . 假设三内角都大于60度 C . 假设三内角至多有一个大于60度 D . 假设三内角至多有两个大于60度
4、曲线y=ex , y=ex和直线x=1围成的图形面积是(   )
A . e﹣e1 B . e+e1 C . e﹣e1﹣2 D . e+e1﹣2
5、点P是曲线y=x2﹣1nx上任意一点,则点P到直线y=x﹣2的距离的最小值是(   )
A . 1 B . C . 2 D . 2
6、一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是(   )
A . 7米/秒 B . 6米/秒 C . 5米/秒 D . 8米/秒
7、i是虚数单位, =(   )
A . 1+2i B . ﹣1﹣2i C . 1﹣2i D . ﹣1+2i
8、 dx等于(   )
A . ﹣2ln2 B . 2ln2 C . ﹣ln2 D . ln2
9、探索以下规律:则根据规律,从2010到2012,箭头的方向依次是(   )

A . 向上再向右 B . 向右再向上 C . 向下再向右 D . 向右再向下
10、用数学归纳法证明“当n 为正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是(   )
A . 假设n=k(k∈N*),证明n=k+1命题成立 B . 假设n=k(k为正奇数),证明n=k+1命题成立 C . 假设n=2k+1(k∈N*),证明n=k+1命题成立 D . 假设n=k(k为正奇数),证明n=k+2命题成立
11、对于R上可导的任意函数f(x),若满足(x﹣2)f′(x)>0,则必有(   )
A . f(2)<f(0)<f(﹣3) B . f(﹣3)<f(0)<f(2)   C . f(0)<f(2)<f(﹣3) D . f(2)<f(﹣3)<f(0)
12、若函数 ,且0<x1<x2<1,设 ,则a,b的大小关系是(   )
A . a>b B . a<b C . a=b D . b的大小关系不能确定

二、填空题(共4小题)

1、已知m∈R,并且 的实部和虚部相等,则m的值为      
2、观察以下三个等式:

sin215°﹣sin245°+sin15°cos45°=﹣

sin220°﹣sin250°+sin20°cos50°=﹣

sin230°﹣sin260°+sin30°cos60°=﹣

猜想出一个反映一般规律的等式:      

3、若函数f(x)= x3﹣f′(1)x2+x+5,则f′(1)=      
4、已知函数f(x)满足f(x)=f(π﹣x),且当 时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是      

三、解答题(共6小题)

1、求曲线xy=1及直线y=x,y=3所围成图形的面积.
2、已知函数f(x)= x3﹣2ax2+3a2x+b(a>0).
(1)当y=f(x)的极小值为1时,求b的值;
(2)若f(x)在区间[1,2]上是减函数,求a的范围.
3、已知某家企业的生产成本z(单位:万元)和生产收入ω(单位:万元)都是产量x(单位:t)的函数,其解析式分别为:z=x3﹣18x2+75x﹣80,ω=15x
(1)试写出该企业获得的生产利润y(单位:万元)与产量x(单位:t)之间的函数解析式;
(2)当产量为多少时,该企业能获得最大的利润?最大利润是多少?
4、数列{an}中,a1=1,Sn表示前n项和,且Sn , Sn+1 , 2S1成等差数列.
(1)计算S1 , S2 , S3的值;
(2)根据以上结果猜测Sn的表达式,并用数学归纳法证明你的猜想.
5、设函数已知函数f(x)=x3+ax2+bx+c在x=﹣ 和x=1处取得极值.
(1)求a,b的值及其单调区间;
(2)若对x∈[﹣1,2]不等式f(x)≤c2恒成立,求c的取值范围.
6、已知f(x)=2ax﹣ +lnx在x=1与x= 处都取得极值.

(Ⅰ) 求a,b的值;

(Ⅱ)设函数g(x)=x2﹣2mx+m,若对任意的x1∈[ ,2],总存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求实数m的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年河南省周口市沈丘县高二下学期期中数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;