2017年安徽省宿州市高考数学一模试卷(理科)
年级:高考 学科:数学 类型: 来源:91题库
一、选择题:(共12小题)



























某几何体的三视图如图所示,则该几何体的表面积为( )





①命题“若x=y,则sinx=siny”的逆否命题是真命题;
②已知α,β是不同的平面,m,n是不同的直线,m∥α,n∥β,α⊥β,则m⊥n;
③直线l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要条件是 ;
④ .








二、填空题(共4小题)







三、解答题(共7小题)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Tn .
如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为 ,求二面角D﹣AC﹣H的余弦值.
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:
选择表演 | 拒绝表演 | 合计 | |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合计 | 60 | 20 | 80 |
①根据表中数据,是否有99%的把握认为“表演节目”与好友的性别有关?
②将此样本的频率视为总体的概率,随机调查3名男性好友,设X为3个人中选择表演的人数,求X的分布列和期望.
附:K2= ;
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |


(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点 作圆
的切线,切点分别为M、N,直线MN与x轴交于点F,过点F的直线l交椭圆C于A、B两点,点F关于y轴的对称点为G,求△ABG的面积的最大值.

(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若函数f(x)存在极值,对于任意的0<x1<x2 , 存在正实数x0 , 使得f(x1)﹣f(x2)=f'(x0)•(x1﹣x2),试判断x1+x2与2x0的大小关系并给出证明.


(Ⅰ)以O为极点,x轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C2的极坐标方程;
(Ⅱ)若曲线C1与曲线C2相交于点A、B,求|AB|.
(Ⅰ)求证:当a=﹣1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.