2016-2017学年山西省晋中市高二上学期期末数学试卷(理科)

年级:高二 学科:数学 类型:期末考试 来源:91题库

一、选择题:(共12小题)

1、已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为(  )


A . 6 B . 2+4 C . 2 D . 4+2
2、在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1 , 以C,D为焦点且过点A的椭圆的离心率为e2 , 若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为(   )

A . B . C . 2 D .
3、过双曲线 =1(a>0,b>0)的右焦点D作直线y=﹣ x的垂线,垂足为A,交双曲线左支于B点,若 =2 ,则该双曲线的离心率为(  )
A . B . 2 C . D .
4、已知直线 l1:ax+(a+2)y+1=0,l2:x+ay+2=0,则“l1∥l2”是“a=﹣1”的(   )
A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件
5、命题“∃x>0,使2x>3x”的否定是(   )
A . ∀x>0,使2x≤3x B . ∃x>0,使2x≤3x   C . ∀x≤0,使2x≤3x D . ∃x≤0,使2x≤3x
6、双曲线 =1的渐近线方程为(   )
A . y=± B . y=± x C . y=± x D . y=± x
7、在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是(   )
A . B . C . D .
8、已知a、b、c为三条不重合的直线,下面有三个结论:①若a⊥b,a⊥c则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c则a⊥c.其中正确的个数为(   )
A . 0个 B . 1个 C . 2个 D . 3个
9、设点P为椭圆 上一点,F1 , F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为(   )
A . B . C . D .
10、已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则 的取值范围是(   )
A . [﹣8,﹣1] B . [﹣8,0] C . [﹣16,﹣1] D . [﹣16,0]
11、在四面体S﹣ABC中, ,二面角S﹣AC﹣B的余弦值为- ,则该四面体外接球的表面积是(   )
A . B . C . 24π D .
12、已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的动点.给出以下四个结论中,正确的个数是(   )

①与点D距离为 的点P形成一条曲线,则该曲线的长度是

②若DP∥面ACB1 , 则DP与面ACC1A1所成角的正切值取值范围是

③若 ,则DP在该四棱柱六个面上的正投影长度之和的最大值为

A . 0 B . 1 C . 2 D . 3

二、填空题:(共4小题)

1、已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常数,当s+t取最小值 时,m、n对应的点(m,n)是双曲线 一条弦的中点,则此弦所在的直线方程为      
2、直线 的倾斜角为      
3、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为      

4、已知直线l:x+y﹣6=0和圆M:x2+y2﹣2x﹣2y﹣2=0,点A在直线l上,若直线AC与圆M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围为      

三、解答题:(共6小题)

1、已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.
2、已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,

(Ⅰ)试求M点的轨C2方程;

(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.

3、如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.

(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.
4、已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点.

(Ⅰ)求直线PF的方程;

(Ⅱ)求△DAB的面积S范围;

(Ⅲ)设 ,求证λ+μ为定值.

5、如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.

(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;

(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于 ?若存在,试确定点N的位置;若不存在,请说明理由.

6、在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1 , 且直线OA、OB的斜率之积等于- ,问四边形ABA1B1的面积S是否为定值?请说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年山西省晋中市高二上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;