2017年辽宁省丹东市、鞍山市、营口市高考数学一模试卷(理科)23

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、公差不为零的等差数列{an}的前n项和为Sn . 若a4是a3与a7的等比中项,S8=32,则S10等于(  )

A . 18 B . 24 C . 60 D . 90
2、设P={x|x<4},Q={x|x2<4},则(   )
A . P⊆Q B . Q⊆P C . P⊆∁RQ D . Q⊆∁RP
3、复数 ,且A+B=0,则m的值是(   )
A . B . C . D . 2
4、设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为(   )
A . 1+a,4 B . 1+a,4+a C . 1,4 D . 1,4+a
5、设F1和F2为双曲线 (a>0,b>0)的两个焦点,若F1 , F2 , P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是(   )
A . y=± x B . y=± x C . y=± x D . y=± x
6、设a=log23, ,c=log34,则a,b,c的大小关系为(   )
A . b<a<c B . c<a<b C . a<b<c D . c<b<a
7、圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离的差是(   )
A . 18 B . 6 C . 5 D . 4
8、已知某几何体的三视图如图所示,则该几何体的体积为(   )

A . B . C . D .
9、(x+y+z)4的展开式共(   )项.
A . 10 B . 15 C . 20 D . 21
10、已知函数f(x)在R上满足f(x)=2f(2﹣x)﹣x2+8x﹣8,则曲线y=f(x)在点(1,f(1))处的切线方程是(   )
A . y=﹣2x+3 B . y=x C . y=3x﹣2 D . y=2x﹣1
11、已知椭圆的左焦点为F1 , 有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为(   )
A . B . C . D .
12、为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(  )

A . (1+ )米 B . 2米 C . (1+ )米 D . (2+ )米

二、填空题(共4小题)

1、等比数列{an}的公比q>0.已知a2=1,an+2+an+1=6an , 则{an}的前4项和S4=      
2、如图所示,输出的x的值为      


3、已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为      
4、设点P在曲线y= ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为      

三、解答题(共7小题)

1、已知函数f(x)=2cos2x+2 sinxcosx+a,且当x∈[0, ]时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的 ,再将所得图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.
2、某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队只比赛一场),共有高一、高二、高三三个队参赛,高一胜高二的概率为 ,高一胜高三的概率为 ,高二胜高三的概率为P,每场胜负独立,胜者记1分,负者记0分,规定:积分相同者高年级获胜.


(Ⅰ)若高三获得冠军概率为 ,求P.

(Ⅱ)记高三的得分为X,求X的分布列和期望.

3、已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.
4、已知函数f(x)=x2+ +alnx.


(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;

(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1 , y1)、B(x2 , y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.

5、选修4﹣4;坐标系与参数方程

已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).

(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
6、选修4﹣4;坐标系与参数方程

已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).

7、设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.
8、如图所示,三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

(Ⅰ)求证:C1B⊥平面ABC;

(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年辽宁省丹东市、鞍山市、营口市高考数学一模试卷(理科)23

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;