2017年江苏省无锡市宜兴市周铁学区联盟中考数学一模试卷

年级:中考 学科:数学 类型:中考模拟 来源:91题库

一、选择题(共10小题)

1、

如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是(  )


A . B . C . D . 2
2、如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:

平均数(cm)

185

180

185

180

方差

3.6

3.6

7.4

8.1

根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择(   )

A . B . C . D .
3、﹣2的相反数是(   )
A . ﹣2 B . 0 C . 2 D . 4
4、科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为(   )
A . 3.5×106 B . 3.5×106 C . 3.5×105 D . 35×105
5、下列运算正确的是(   )
A . (a﹣3)2=a2﹣9 B . a2•a4=a8 C . =±3 D . =﹣2
6、下列图形是中心对称图形的是(   )

A . B . C . D .
7、下列语句正确的是(   )
A . 对角线互相垂直的四边形是菱形 B . 有两边及一角对应相等的两个三角形全等 C . 矩形的对角线相等 D . 平行四边形是轴对称图形
8、如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(   )

A . B . C . D .
9、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为(   )

A . 2 B . C . D . 3
10、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=(   )

A . 65° B . 115° C . 125° D . 130°

二、填空题(共8小题)

1、分解因式:xy2﹣x=      
2、若式子 有意义,则实数x的取值范围是      
3、方程 =1的根是x=      
4、方程 =1的根是x=      
5、已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是      
6、如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin∠OBD=      

7、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是      

8、如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为      

9、如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为       m(结果保留根号).

三、解答题(共10小题)

1、计算下列各题:
(1)﹣|﹣1|+ •cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)
2、解方程与不等式
(1)解方程:x2+3x﹣2=0;
(2)解不等式组:
3、已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.

4、在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是
(1)袋子中黄色小球有      个;
(2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率.
5、某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?
6、

如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.

(1)求斜坡AB的水平宽度BC;

(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(结果保留根号)

7、如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.

(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB= ,E是 的中点,求EG•ED的值.
8、

爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

(1)【特例探究】

如图1,当tan∠PAB=1,c=4 时,a=      ,b=      

如图2,当∠PAB=30°,c=2时,a=      ,b=      

(2)【归纳证明】

请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

(3)

【拓展证明】

如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

9、

爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

10、

如图,已知抛物线y=﹣ x2 x+2与x轴交于A、B两点,与y轴交于点C

(1)求点A,B,C的坐标;

(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;

(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

11、某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:

(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年江苏省无锡市宜兴市周铁学区联盟中考数学一模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;