2017年安徽省合肥市高考数学二模试卷(理科)
年级:高考 学科:数学 类型: 来源:91题库
一、选择题(共12小题)


















二、填空题(共4小题)







三、解答题(共7小题)



(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)= 在(0,π)上的解为x1 , x2 , 求cos(x1﹣x2)的值.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | |||
女生 | |||
合计 |
附: ,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)求证:BP⊥CE;
(Ⅱ)求二面角B﹣PC﹣D的余弦值.
如图,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0 , y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1 , l2 , l1与l2相交于点M.
(Ⅰ)求p的值;
(Ⅱ)求动点M的轨迹方程.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设m>1,x1 , x2为函数f(x)的两个零点,求证:x1+x2<0.
在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.
已知函数 .