2017年河北省邯郸市高考数学一模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知集合A={x|x2﹣2x﹣3<0},B={x|x≥2},则A∩B=(   )
A . (2,3] B . [2,3] C . (2,3) D . [2,3)
2、已知a,b∈R,i为虚数单位,当a+bi=i(1﹣i)时,则 =(   )
A . i B . ﹣i C . 1+i D . 1﹣i
3、已知向量 满足| |=2,| |=3,( )• =7,则 的夹角为(   )
A . B . C . D .
4、已知椭圆C: (a>b>0)的左焦点为F(﹣c,0),上顶点为B,若直线y= x与FB平行,则椭圆C的离心率为(   )
A . B . C . D .
5、已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD= ,AB=2,则SABC=(   )
A . 3 B . 2 C . 3 D . 6
6、从5种主料职工选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为(   )
A . 18 B . 200 C . 2800 D . 33600
7、执行如图所示的程序框图,则输出的结果是(   )
A . 8 B . 13 C . 21 D . 34
8、如图,在边长为2的正方形ABCD中,M是AB的中点,则过C,M,D三点的抛物线与CD围成阴影部分的面积是(   )

A . B . C . D .
9、设{an}是公差为2的等差数列,bn=a ,若{bn}为等比数列,则b1+b2+b3+b4+b5=(   )
A . 142 B . 124 C . 128 D . 144
10、已知棱长为 的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则 + 的最小值为(   )
A . B . 4 C . D . 5
11、设f(x)=ex , f(x)=g(x)﹣h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[﹣1,1]时,不等式mg(x)+h(x)≥0成立,则m的最小值为(   )
A . B . C . D .
12、某几何体的三视图如图所示,则该几何体的体积为(   )

A . π B . π C . π D . π

二、填空题.(共4小题)

1、已知函数f(x)= ,则f[f(﹣3)]=      
2、已知函数f(x)=ax+b,0<f(1)<2,﹣1<f(﹣1)<1,则2a﹣b的取值范围是      
3、已知函数f(x)=ax+b,0<f(1)<2,﹣1<f(﹣1)<1,则2a﹣b的取值范围是      
4、已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:

A:p是真命题;B:p∨q是假命题;C:m是真命题.

老师告诉学生三个判断中只有一个是错误的,那么三个命题p,q,m中的真命题是      

5、已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:

A:p是真命题;B:p∨q是假命题;C:m是真命题.

老师告诉学生三个判断中只有一个是错误的,那么三个命题p,q,m中的真命题是      

6、已知点A(a,0),点P是双曲线C: ﹣y2=1右支上任意一点,若|PA|的最小值为3,则a=      
7、已知点A(a,0),点P是双曲线C: ﹣y2=1右支上任意一点,若|PA|的最小值为3,则a=      

三、解答题(共7小题)

1、已知a,b分别是△ABC内角A,B的对边,且bsin2A= acosAsinB,函数f(x)=sinAcos2x﹣sin2 sin 2x,x∈[0, ].

(Ⅰ)求A;

(Ⅱ)求函数f(x)的值域.

2、如图,在五棱锥P﹣ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.

(Ⅰ)求证:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC= ,侧棱PA与底面ABCDE所成角为45°,SPBE= ,点M在侧棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.

3、某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如图柱状图.

(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;

(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).

(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).

 服务质量评分X

 X≤5

 6≤X≤8

 X≥9

 等级

 不好

 较好

 优良

 奖惩标准(元)

﹣1000

 2000

 3000

4、已知F为抛物线E:x2=2py(p>0)的焦点,直线l:y=kx+ 交抛物线E于A,B两点.

(Ⅰ)当k=1,|AB|=8时,求抛物线E的方程;

(Ⅱ)过点A,B作抛物线E的切线l1 , l2 , 且l1 , l2交点为P,若直线PF与直线l斜率之和为﹣ ,求直线l的斜率.

5、已知函数f(x)=x2﹣alnx(a>0)的最小值是1.

(Ⅰ)求a;

(Ⅱ)若关于x的方程f2(x)ex﹣6mf(x)+9mex=0在区间[1,+∞)有唯一的实根,求m的取值范围.

6、[选修4-4:坐标系与参数方程选讲]


在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1 , C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣ )=


(Ⅰ)求C1和C2交点的极坐标;

(Ⅱ)直线l的参数方程为: (t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.

7、[选修4-5:不等式选讲]


已知函数f(x)=|ax﹣2|.

(Ⅰ)当a=2时,解不等式f(x)>x+1;

(Ⅱ)若关于x的不等式f(x)+f(﹣x)< 有实数解,求m的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年河北省邯郸市高考数学一模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;