2017年四川省广安、遂宁、内江、眉山高考数学一诊试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知i是虚数单位,若z(1+i)=1+3i,则z=(   )
A . 2+i B . 2﹣i C . ﹣1+i D . ﹣1﹣i
2、已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁U(A∪B)=(   )
A . {3} B . {7,8} C . {7,8,9} D . {1,2,3,4,5,6}
3、若 ,则 =(   )
A . B . C . D .
4、已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的(   )
A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分有不必要条件
5、如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且 ,则λ+μ=(   )

A . 3 B . C . 2 D . 1
6、如图,是某算法的程序框图,当输出T>29时,正整数n的最小值是(   )

A . 2 B . 3 C . 4 D . 5
7、从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是(   )
A . B . C . D .
8、已知数列{an}满足an= 若对于任意的n∈N*都有an>an+1 , 则实数a的取值范围是(   )
A . (0, B . C . ,1) D . ,1)
9、已知不等式  sin  cos  +  cos2 ﹣m≥0对于x∈[﹣ ]恒成立,则实数m的取值范围是(   )
A . (﹣∞,﹣ ] B . (﹣∞,﹣ ] C . [ ] D . [ ,+∞)
10、如图,在三棱锥A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,则直线AD与平面BCD所成角的大小是(   )

A . B . C . D .
11、椭圆 的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率是(   )
A . B . C . D .
12、已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是(   )
A . (0,2] B . [ ,+∞) C . [ ,2] D . [ ,2]∪[4,+∞)

二、填空题(共4小题)

1、二项式 的展开式中常数项为      
2、学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是C或D作品获得一等奖”;

乙说:“B作品获得一等奖”;

丙说:“A,D两项作品未获得一等奖”;

丁说:“是C作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是      

3、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为      

4、若直线与圆x2+y2﹣2x﹣4y+a=0和函数 的图象相切于同一点,则a的值为      

三、解答题(共7小题)

1、在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.

(Ⅰ)求角C的大小;

(Ⅱ)求sinAcosB的取值范围.

2、张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:

年龄 (岁)

7

8

9

10

11

12

13

身高 (cm)

121

128

135

141

148

154

160

(Ⅰ)求身高y关于年龄x的线性回归方程;

(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

=

3、已知f(x)是定义在R上的奇函数,当x>0时,f(x)= x3+ax(a∈R),且曲线f(x)在x= 处的切线与直线y=﹣ x﹣1平行.

(Ⅰ)求a的值及函数f(x)的解析式;

(Ⅱ)若函数y=f(x)﹣m在区间[﹣3, ]上有三个零点,求实数m的取值范围.

4、已知f(x)是定义在R上的奇函数,当x>0时,f(x)= x3+ax(a∈R),且曲线f(x)在x= 处的切线与直线y=﹣ x﹣1平行.

(Ⅰ)求a的值及函数f(x)的解析式;

(Ⅱ)若函数y=f(x)﹣m在区间[﹣3, ]上有三个零点,求实数m的取值范围.

5、设各项均为正数的数列{an}的前n项和为Sn , 且满足2 =an+1(n∈N*).

(Ⅰ)求数列{an}的通项公式; 

(Ⅱ)若bn=(an+1)•2 ,求数列{bn}的前n项和Tn

6、已知函数f(x)=aex﹣x(a∈R),其中e为自然对数的底数,e=2.71828…

(Ⅰ)判断函数f(x)的单调性,并说明理由

(Ⅱ)若x∈[1,2],不等式f(x)≥ex恒成立,求a的取值范围.

7、[选修4-4:坐标系与参数方程]

在平面直角坐标系中,曲线C1 (a为参数)经过伸缩变换 后的曲线为C2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(Ⅰ)求C2的极坐标方程;

(Ⅱ)设曲线C3的极坐标方程为ρsin( ﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.

8、[选修4-5:不等式选讲]

已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.

(Ⅰ)当b=1时,求不等式f(x)≥1的解集;

(Ⅱ)当x∈R时,求证f(x)≤g(x).

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年四川省广安、遂宁、内江、眉山高考数学一诊试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;