2017年四川省自贡市高考数学二诊试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、设集合A={x|x2﹣3x<0},B={x||x|>2},则A∩B=(   )
A . (2,3) B . (﹣2,3) C . (0,2) D . (﹣2,0)
2、复数z满足:(3﹣4i)z=1+2i,则z=(   )
A . B . C . D .
3、设命题p:∀x>0,x﹣lnx>0,则¬p为(   )
A . ∀x>0,x﹣lnx≤0 B . ∀x>0,x﹣lnx<0 C . ∃x0>0,x0﹣lnx0>0 D . ∃x0>0,x0﹣lnx0≤0
4、已知2sin2α=1+cos2α,则tan(α+ )的值为(   )
A . ﹣3 B . 3 C . ﹣3或3 D . ﹣1或3
5、函数f(x)=3sin(2x﹣ )的图象可以由y=3sin2x的图象(   )
A . 向右平移 个单位长度得到 B . 向左平移 个单位长度得到 C . 向右平移 个单位长度得到 D . 向左平移 个单位长度得到
6、△ABC中,∠C=90°,且CA=3,点M满足 =2 ,则 的值为(   )
A . 3 B . 6 C . 9 D . 不确定
7、设数列{an}的前n项和为Sn , 若Sn+1 , Sn , Sn+2成等差数列,且a2=﹣2,则a7=(   )
A . 16 B . 32 C . 64 D . 128
8、《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为(   )
A . 20%  369 B . 80%  369 C . 40%  360 D . 60%  365
9、定义[x]表示不超过x的最大整数,例如[2.11]=2,[﹣1.39]=﹣2,执行如下图所示的程序框图,则输出m的值为

(   )

A . B . C . D .
10、如图所示是一个几何体的三视图,则这个几何体外接球的体积为(   )

A . 36π B . π C . 8 π D . π
11、设双曲线 ﹣y2=1的两焦点分别为F1 , F2 , P为双曲线上的一点,若PF1与双曲线的一条渐近线平行,则cos∠F1PF2=(   )
A . B . C . D .
12、定义域为R的偶函数f(x)满足∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(x+1)恰有三个零点,则a的取值范围是(   )
A . (0, B . (0, C . D .

二、填空题(共4小题)

1、已知n= x3dx,则(x﹣ n的展开式中常数项为      
2、已知实数x,y满足 ,若x﹣y的最大值为6,则实数m=      
3、已知△ABC的三个顶点均在抛物线x2=y上,边AC的中线BM∥y轴,|BM|=2,则△ABC的面积为      
4、设f(x)= (x>0),计算观察以下格式:

f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…

根据以上事实得到当n∈N*时,fn(1)=      

三、解答题(共7小题)

1、在△ABC中,交A、B、C所对的边分别为a,b,c,且c=acosB+bsinA

(Ⅰ)求A;

(Ⅱ)若a=2 ,求△ABC的面积的最值.

2、如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC.

(Ⅰ)若EG∥平面ABC,求 的值;

(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.

3、自贡某个工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示如图所示,已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元.

(Ⅰ)求该企业2016年一年生产一件产品的利润的分布列和期望;

(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

4、已知椭圆E: =1(a>b>0)的离心率是 ,过E的右焦点且垂直于椭圆长轴的直线与椭圆交于A,B两点,|AB|=2.


(Ⅰ)求椭圆方程;

(Ⅱ)过点P(0, )的动直线l与椭圆E交于的两点M,N(不是的椭圆顶点),是否存在实数λ,使 为定值?若存在,求出λ的值;若不存在,请说明理由.

5、已知曲线f(x)= ax3﹣blnx在x=1处的切线方程为y=﹣2x+

(Ⅰ)求f(x)的极值;

(Ⅱ)证明:x>0时, (e为自然对数的底数)

6、已知曲线f(x)= ax3﹣blnx在x=1处的切线方程为y=﹣2x+

(Ⅰ)求f(x)的极值;

(Ⅱ)证明:x>0时, (e为自然对数的底数)

7、[选修4-4:坐标系与参数方程]

已知在直角坐标系xOy中,曲线C的参数方程为 (φ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcos(θ﹣ )=2

(Ⅰ)求曲线C在极坐标系中的方程;

(Ⅱ)求直线l被曲线C截得的弦长.

8、[选修4-5:不等式选讲]

已知函数f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)

(Ⅰ)当a=﹣1时,求不等式f(x)≥5的解集;

(Ⅱ)证明:f(x)≥2

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年四川省自贡市高考数学二诊试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;