2014年广西防城港市中考数学试卷

年级:中考 学科:数学 类型:中考真卷 来源:91题库

一、单项选择题(共12小题)

1、△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是(  )

A . 3 B . 6 C . 9 D . 12
2、下面的数中,与﹣2的和为0的是(   )
A . 2 B . ﹣2 C . D . -
3、将6.18×103化为小数的是(   )

A . 0.000618 B . 0.00618 C . 0.0618 D . 0.618
4、计算(2a23的结果是(   )
A . 2a6 B . 6a6 C . 8a6 D . 8a5
5、下面的多项式在实数范围内能因式分解的是(   )
A . x2+y2 B . x2﹣y C . x2+x+1 D . x2﹣2x+1
6、如图的几何体的三视图是(   )

A . B . C . D .
7、下列命题是假命题的是(   )
A . 四个角相等的四边形是矩形 B . 对角线相等的平行四边形是矩形 C . 对角线垂直的四边形是菱形 D . 对角线垂直的平行四边形是菱形
8、一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(   )
A . B . C . D .
9、x1 , x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使 + =0成立?则正确的结论是(   )
A . m=0时成立 B . m=2时成立 C . m=0或2时成立 D . 不存在
10、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是(   )
A . 1cm<AB<4cm B . 5cm<AB<10cm C . 4cm<AB<8cm D . 4cm<AB<10cm
11、蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有(   )

A . 4个 B . 6个 C . 8个 D . 10个
12、

如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(   )

A . B . C . D .

二、填空题(共6小题)

1、3的倒数是      
2、在平面直角坐标系中,点(﹣4,4)在第      象限.
3、下表是我市某一天在不同时段测得的气温情况

0:00

4:00

8:00

12:00

16:00

20:00

25℃

27℃

29℃

32℃

34℃

30℃

则这一天气温的极差是      ℃.

4、如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=      

5、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是      

6、

如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y= 和y= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:

=

②阴影部分面积是 (k1+k2);

③当∠AOC=90°时,|k1|=|k2|;

④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.

其中正确的结论是      (把所有正确的结论的序号都填上).

三、解答题(共8小题)

1、计算:(﹣2)2 +(sin60°﹣π)0
2、先化简,再求值: ,其中x= ﹣1.
3、

如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O      (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是      

4、第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:

(1)全班学生是多少人?
(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?
(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?
5、如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.

(1)求证:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.
6、如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.

7、我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:
(1)从今年年初起每年新增电动车数量最多是多少万辆?
(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)
8、如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.

(1)求证:四边形BMNP是平行四边形;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.
9、

给定直线l:y=kx,抛物线C:y=ax2+bx+1.

(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;

(2)若把直线l向上平移k2+1个单位长度得到直线l′,则无论非零实数k取何值,直线l′与抛物线C都只有一个交点.

①求此抛物线的解析式;

②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2014年广西防城港市中考数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;