2017年河南省商丘市高考数学二模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题:(共12小题)

1、若不等式组 表示的区域Ω,不等式(x﹣ 2+y2 表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为(   )
A . 114 B . 10 C . 150 D . 50
2、已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则(   )
A . k>e3 B . k≥e3 C . k>e4 D . k≥e4
3、i为虚数单位,若 (a,b∈R)与(2﹣i)2互为共轭复数,则a﹣b=(   )
A . 1 B . ﹣1 C . 7 D . ﹣7
4、已知f(x)=sinx﹣x,命题p:∃x∈(0, ),f(x)<0,则(   )
A . p是假命题,¬p:∀x∈(0, ),f(x)≥0 B . p是假命题,¬p:∃x∈(0, ),f(x)≥0 C . P是真命题,¬p:∀x∈(0, ),f(x)≥0 D . p是真命题,¬p:∃x∈(0, ),f(x)≥0
5、在等差数列{an}中,a1+3a8+a15=60,则2a ﹣a10的值为(   )
A . 6 B . 8 C . 12 D . 13
6、我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为(   )

A . 15 B . 31 C . 63 D . 127
7、一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近(   )

A . 3cm B . 4cm C . 5cm D . 6cm
8、若等边△ABC的边长为3,平面内一点M满足 = + ,则 的值为(   )
A . B . ﹣2 C . D . 2
9、高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有(   )
A . 18种 B . 24种 C . 48种 D . 36种
10、高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有(   )
A . 18种 B . 24种 C . 48种 D . 36种
11、已知双曲线 =1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(   )
A . (1, B . (1,2) C . ,+∞) D . (2,+∞)
12、已知双曲线 =1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(   )
A . (1, B . (1,2) C . ,+∞) D . (2,+∞)
13、如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0, <φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2 ,则f(﹣1)=(   )

A . ﹣2 B . 2 C . D .
14、已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1•x2的取值范围是(   )
A . [4﹣2ln2,+∞) B . ,+∞) C . (﹣∞,4﹣2ln2] D . (﹣∞,

二、填空题:(共4小题)

1、设a= (cosx﹣sinx)dx,则二项式(a 6的展开式中含x2项的系数为      
2、已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若 =0,则k=      

3、已知函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}满足xn+1=xn ,设an=ln ,若a1= ,xn>2,则数列{an}的通项公式an=      
4、已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是      

三、解答题:(共7小题)

1、在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).

(Ⅰ)求证:a,c,b成等差数列;

(Ⅱ)若C= ,△ABC的面积为4 ,求c.

2、甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:

甲公司送餐员送餐单数频数表

 送餐单数

 38

 39

 40

 41

 42

 天数

 20

 40

 20

 10

 10

乙公司送餐员送餐单数频数表

 送餐单数

 38

 39

 40

 41

 42

 天数

 10

 20

 20

 40

 10

(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;

(Ⅱ)若将频率视为概率,回答下列问题:

(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;

(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

3、如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=

(Ⅰ)证明:A1D⊥平面A1BC;

(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.

4、已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.


(Ⅰ)求椭圆E的方程;

(Ⅱ)求△OAB面积的最大值.

5、已知函数f(x)=lnx﹣2ax,a∈R.

(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;

(Ⅱ)设g(x)=f(x)+ ,若g(x)有极大值点x1 , 求证: >a.

6、在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.

(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;

(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求 的值.

7、已知函数f(x)=|x﹣2|+|2x+1|.

(Ⅰ)解不等式f(x)>5;

(Ⅱ)若关于x的方程 =a的解集为空集,求实数a的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年河南省商丘市高考数学二模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;