2017年山西省太原市高考数学一模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=(   )
A . (﹣2,0) B . (0,2) C . (﹣1,2) D . (﹣2,﹣1)
2、已知zi=2﹣i,则复数z在复平面对应点的坐标是(   )
A . (﹣1,﹣2) B . (﹣1,2) C . (1,﹣2) D . (1,2)
3、已知Sn是等差数列{an}的前n项和,2(a1+a3+a5)+3(a8+a10)=36,则S11=(   )
A . 66 B . 55 C . 44 D . 33
4、已知 =(1,cosα), =(sinα,1),0<α<π,若 ,则α=(   )
A . B . C . D .
5、已知圆C:x2+y2=1,直线l:y=k(x+2),在[﹣1,1]上随机选取一个数k,则事件“直线l与圆C相离

”发生的概率为(   )

A . B . C . D .
6、执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(   )

A . 1 B . 2 C . 3 D . 4
7、已知D= ,给出下列四个命题:


P1:∀(x,y)∈D,x+y+1≥0;

P2:∀(x,y)∈D,2x﹣y+2≤0;

P3:∃(x,y)∈D, ≤﹣4;

P4:∃(x,y)∈D,x2+y2≤2.

其中真命题的是(   )

A . P1 , P2 B . P2 , P3 C . P2 , P4 D . P3 , P4
8、已知抛物线y2=4x的焦点为点F,过焦点F的直线交该抛物线于A、B两点,O为坐标原点,若△AOB的面积为 ,则|AB|=(   )
A . 6 B . 8 C . 12 D . 16
9、已知函数f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(   )
A . ] B . ] C . ] D . ]
10、设函数f(x)= 与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为(   )
A . B . C . D .
11、函数 的图象大致为(   )
A . B . C . D .
12、某几何体的三视图如图所示,则该几何体的表面积为(   )

A . 6π+1 B . C . D .

二、填空题(共4小题)

1、已知 ,若 ,则实数t=      
2、已知双曲线经过点 ,其一条渐近线方程为y=2x,则该双曲线的标准方程为      
3、已知三棱锥A﹣BCD中,BC⊥CD,AB=AD= ,BC=1,CD= ,则该三棱锥外接球的体积为      
4、已知数列{an}中, ,则其前n项和Sn=      

三、解答题(共7小题)

1、已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.
(1)证明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.
2、

某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.


(1)求甲乙两人采用不同分期付款方式的概率;

(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.

3、

某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.


4、如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.

(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.
5、已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1

(1)求椭圆C的方程;

(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

6、已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1

7、已知函数f(x)=2lnx+ax﹣ (a∈R)在x=2处的切线经过点(﹣4,2ln2)
(1)讨论函数f(x)的单调性
(2)若不等式 恒成立,求实数m的取值范围.
8、已知函数f(x)=2lnx+ax﹣ (a∈R)在x=2处的切线经过点(﹣4,2ln2)
9、在直角坐标系xOy中,曲线C1的参数方程为 ,(其中φ为参数),曲线 ,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1 , C2分别交于点A,B(均异于原点O)
(1)求曲线C1 , C2的极坐标方程;
(2)当 时,求|OA|2+|OB|2的取值范围.
10、已知函数
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;
(2)当a< 时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年山西省太原市高考数学一模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;