人教新课标A版选修2-3数学3.2独立性检验的基本思想及其初步应用同步检测
年级:高二 学科:数学 类型:同步测试 来源:91题库
一、选择题(共12小题)
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
则至少有( )的把握认为喜爱打篮球与性别有关.
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1 , x2 , x3 , …,xn的方差为1,则2x1 , 2x2 , 2x3 , …,2xn的方差为2;
④对分类变量X与Y的随机变量K2的观测值K来说,K越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为( )




Ⅱ | |||
类1 | 类2 | ||
Ⅰ | 类A | a | b |
类B | c | d |




P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |

非统计专业 | 统计专业 | |
男 | 13 | 10 |
女 | 7 | 20 |
为了判断选修统计专业是否与性别有关,根据表中数据,得 ,因为
,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为( )





y1 | y2 | 总计 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
则下列说法中正确的是( )
二、填空题(共4小题)
晚上 | 白天 | 总计 | |
男 | 45 | A | 92 |
女 | B | 35 | C |
总计 | 98 | D | 180 |
喜欢数学课 | 不喜欢数学课 | 合计 | |
男 | 30 | 60 | 90 |
女 | 20 | 90 | 110 |
合计 | 50 | 150 | 200 |
经计算K2≈6.06,根据独立性检验的基本思想,约有 (填百分数)的把握认为“性别与喜欢数学课之间有关系”.
附:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
患慢性气管炎 | 未患慢性气管炎 | 合计 | |
吸烟 | 43 | 162 | 205 |
不吸烟 | 13 | 121 | 134 |
合计 | 56 | 283 | 339 |
根据列联表数据,求得K2 = .
三、解答题(共9小题)
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式 ,其中
)


男 | 女 | 合计 | |
喜欢数学课程 |
|
|
|
不喜欢数学课程 |
|
|
|
合计 |
|
|
|
总成绩好 | 总成绩不好 | 总计 | |
数学成绩好 | 20 | 10 | 30 |
数学成绩不好 | 5 | 15 | 20 |
总计 | 25 | 25 | 50 |
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)
男 | 女 | 合计 | |
需要 | 40 | 30 | |
不需要 | 160 | 270 | |
合计 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
男 | 女 | 合计 | |
需要 | 40 | 30 |
|
不需要 | 160 | 270 |
|
合计 |
|
|
|
并估计该地区老年人中,需要志愿者提供帮助的老年人的比例 (填百分数);
其中
为样本容量。
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |






附表:
P( | 0.100 | 0 .010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
,(其中
)


分数段 | ||||||
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |

如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |

接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?