2016-2017学年湖北省鄂东南省级示范高中联考高二下学期期中数学试卷(理科)

年级:高二 学科:数学 类型:期中考试 来源:91题库

一、选择题(共12小题)

1、命题“∃x0>0,使得(x0+1) >1”的否定是(   )
A . ∀x>0,总有(x+1)ex≤1 B . ∀x≤0,总有(x+1)ex≤1 C . ∃x0≤0,总有(x0+1) ≤1 D . ∃x0>0,使得(x0+1) ≤1
2、为了解城市居民的健康状况,某调查机构从一社区的120名年轻人,80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=(   )
A . 26 B . 24 C . 20 D . 13
3、为了解重庆某社区居民的家庭年收入和年支出的关系,随机调查了5户家庭,得到统计数据表,根据表中可得回归直线方程 = x+ ,其中 =0.5,据此估计,该社区一户收入为16万元家庭年支出为(   )

收入x(万元)

6

8

10

12

14

支出y(万元)

6

7

8

9

10

A . 15万元 B . 14万元 C . 11万元 D . 10万元
4、某地区教学考试的成绩X~N(100,100),成绩X位于区间(110,120]的概率是(   )


参考数据

P(μ﹣σ<X≤μ+σ)=0.6826

P(μ﹣2σ<X≤μ+2σ)=0.9544

P(μ﹣3σ<X≤μ+3σ)=0.9974.

A . 0.6826 B . 0.9544 C . 0.2718 D . 0.1359
5、已知正方体ABCD﹣A1B1C1D1的各顶点都在球O表面上,在球O内任取一点M,则点M在正方体ABCD﹣A1B1C1D1内的概率是(   )
A . B . C . D .
6、某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3000人,计算发现K2的观测者k=6.023,根据这一数据查阅如表:

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.5

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

得到的正确结论是(   )

A . 有97.5%以上的把握认为“市民收入增减与旅游愿望无关” B . 有97.5%以上的把握认为“市民收入增减与旅游愿望有关” C . 在犯错误的概率不超过0.25%的前提下,认为“市民收入增减与旅游愿望无关” D . 在犯错误的概率不超过0.25%的前提下,认为“市民收入增减与旅游愿望有关”
7、在三棱柱ABC﹣A1B1C1中,各侧面均为正方形,侧面AA1C1C的对角线相交于点M,则BM与平面ABC所成角的大小是(   )

A . 30° B . 45° C . 60° D . 90°
8、高二(7)班参加冬令营的6位同学排成一排照相,甲乙必须相邻且甲、乙、丙必须从左到右的排法种数为(   )
A . 120 B . 60 C . 36 D . 72
9、若函数f(x)在R上可导,且f(x)=x2+2f′(1)x+3,则(   )
A . f(0)<f(4) B . f(0)=f(4) C . f(0)>f(4) D . 无法确定
10、已知(1﹣x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10 , 则a9=(   )
A . ﹣20 B . 20 C . ﹣10 D . 10
11、已知点P是双曲线 =1的右支上一点,F1、F2分别为双曲线的左、右焦点,I为△PF1F2的内心,若 = 成立,则λ的值为(   )

A . B . C . D .
12、执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是(   )

A . k>7 B . k>6 C . k>5 D . k>4

二、填空题(共4小题)

1、已知P(A)= ,P(AB)= ,则P(B|A)=      
2、如图某综艺节目现场设有A,B,C,D四个观众席,现有由5不同颜色的马甲可供现场观众选择,同一观众席上的马甲的颜色相同,相邻观众席上的马甲的颜色不相同,则不同的安排方法种数为      

3、某大厦有一部电梯,若该电梯在底层有5个乘客,且每位乘客在第10层下电梯的概率为 ,用ξ表示5位乘客在第10层下电梯的人数,则随机变量ξ的期望E(ξ)=      
4、以下几个命题中真命题的序号为      


①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;

②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;

③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=﹣4时,v2的值为22;

④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

三、解答题(共6小题)

1、已知集合A是函数y=lg(6+5x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=∅,求a的取值范围;
(2)若¬p是q的充分不必要条件,求a的取值范围.
2、如图是从成都某中学参加高三体育考试的学生中抽出的40名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:

(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图,并估计这次考试的及格率(60分及以上为及格);
(2)从成绩在[80,100]内的学生中选出三人,记在90分以上(含90分)的人数为X,求X的分布列及数学期望.
3、已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3.
(1)求f(x)的解析式;
(2)求过点A(2,2)的切线方程.
4、如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E为BC的中点.

(1)证明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大小.
5、已知椭圆C: + =1(a>b>0),短轴长2,两焦点分别为F1 , F2 , 过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.

(1)求椭圆C的方程;

(2)直线l与椭圆C相交于A,B点,点D为椭圆C上一点,四边形AOBD为矩形,求直线l的方程.

6、已知函数f(x)=lnx+x2﹣ax(a∈R)
(1)a=3时,求函数f(x)的单调区间;
(2)若f(x)≤2x2恒成立,求实数a的取值范围;
(3)求证;lnn> + +1 +…+ (n∈N+)且n≥2.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年湖北省鄂东南省级示范高中联考高二下学期期中数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;