2016-2017学年广东省揭阳市惠来一中高二下学期期中数学试卷(理科)

年级:高二 学科:数学 类型:期中考试 来源:91题库

一、选择题(共12小题)

1、已知函数g(x)=a﹣x2≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是(  )

A . [1,+2]   B . [1,e2﹣2]  C . [+2,e2﹣2]  D . [e2﹣2,+∞)
2、数列{an}为等差数列,a1 , a2 , a3为等比数列,a5=1,则a10=(   )
A . 5 B . ﹣1 C . 0 D . 1
3、用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(   )
A . (k+1)2+2k2 B . (k+1)2+k2 C . (k+1)2 D .
4、有一段“三段论”,其推理是这样的:

对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点…大前提因为函数f(x)=x3满足f′(0)=0,…小前提所以x=0是函数f(x)=x3的极值点”,结论以上推理(   )

A . 大前提错误 B . 小前提错误 C . 推理形式错误 D . 没有错误
5、已知i是虚数单位,若z1=2+i,z2=1﹣i,则 在复平面内的对应点位于(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
6、7名旅客分别从3个不同的景区中选择一处游览,不同选法种数是(   )
A . 73 B . 37 C . D .
7、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(   )

A . 1 B . C . D . 2
8、我们知道:在平面内,点(x0 , y0)到直线Ax+By+C=0的距离公式为d= ,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为(   )
A . 3 B . 5 C . D .
9、已知a>b>0,椭圆C1的方程为 + =1,双曲线C2的方程为 =1,C1与C2的离心率之积为 ,则C2的渐近线方程为(   )
A . y=0 B . x±y=0 C . x±2y=0 D . 2x±y=0
10、中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人所站的位置不做要求,那么不同的站法共有(   )
A . A1818 B . A2020 C . A32A183A1010 D . A22A1818
11、已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=lnf′(x)的单调减区间为(   )

A . [0,3) B . [﹣2,3] C . (﹣∞,﹣2) D . [3,+∞)
12、在校庆文娱汇演节目中,高二级有3名男生3名女生站成一列合唱“爱我中华”,恰好有两位女同学站在一起的站法一共有(   )
A . 216种 B . 288种 C . 360种 D . 432种

二、填空题(共10小题)

1、已知复数z满足|z|=1,则|z﹣1﹣i|的最大值为      
2、在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2 ,且C= ,则△ABC的面积为      
3、如图,一个树形图依据下列规律不断生长:1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点.则第11行的实心圆点的个数是      

4、已知函数f(x)的定义域[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示

x

﹣1

0

2

4

5

F(x)

1

2

1.5

2

1

下列关于函数f(x)的命题;

①函数f(x)的值域为[1,2];

②函数f(x)在[0,2]上是减函数

③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;

④当1<a<2时,函数y=f(x)﹣a最多有4个零点.

其中正确命题的序号是      

5、已知f(x)=|x+1|+|x﹣1|.

(Ⅰ)求不等式f(x)<4的解集;

(Ⅱ)若不等式f(x)﹣|a﹣1|<0有解,求a的取值范围.

6、数列{an}满足
(1)计算a1 , a2 , a3 , a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.
7、函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,将y=f(x)的图象向右平移 个单位长度后得到函数y=g(x)的图象.

(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2 =g(C+ )+1,且其外接圆的半径R=2,求△ABC的面积的最大值.
8、如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD= ,求三棱锥E﹣ACD的体积.

9、已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.

10、已知函数f(x)=xlnx
(1)求f(x)在点(1,f(1))处的切线方程;
(2)若函数 在[1,e]上的最小值为 ,求a的值;
(3)若k∈Z,且f(x)+x﹣k(x﹣1)>0对任意x>1恒成立,求k的最大值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年广东省揭阳市惠来一中高二下学期期中数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;