2017年高考理数真题试卷(新课标Ⅱ卷)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(共12小题)

1、 =(    )

A . 1+2i B . 1﹣2i C . 2+i D . 2﹣i
2、设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=(    )

A . {1,﹣3} B . {1,0} C . {1,3} D . {1,5}
3、我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(    )

A . 1盏 B . 3盏 C . 5盏 D . 9盏
4、设x,y满足约束条件 ,则z=2x+y的最小值是(    )

A . ﹣15 B . ﹣9 C . 1 D . 9
5、安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(    )

A . 12种 B . 18种 C . 24种 D . 36种
6、甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则(    )

A . 乙可以知道四人的成绩 B . 丁可以知道四人的成绩 C . 乙、丁可以知道对方的成绩 D . 乙、丁可以知道自己的成绩
7、若双曲线C: =1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为(    )

A . 2 B . C . D .
8、已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为(    )

A . B . C . D .
9、若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为(    )

A . ﹣1 B . ﹣2e﹣3 C . 5e﹣3 D . 1
10、已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则 •( + )的最小值是(    )

A . ﹣2 B . C . D . ﹣1
11、

如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(    )


A . 90π B . 63π C . 42π D . 36π
12、

执行如图的程序框图,如果输入的a=﹣1,则输出的S=(    )

A . 2 B . 3 C . 4 D . 5

二、填空题:本题共4小题,每小题5分,共20分.(共4小题)

1、一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=      

2、函数f(x)=sin2x+ cosx﹣ (x∈[0, ])的最大值是      

3、等差数列{an}的前n项和为Sn , a3=3,S4=10,则 =      

4、已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=      

三、解答题(共7小题)

1、△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2

(Ⅰ)求cosB;

(Ⅱ)若a+c=6,△ABC面积为2,求b.

2、

海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;

(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:


箱产量<50kg        

         箱产量≥50kg

旧养殖法


         

  新养殖法


          

(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).

附:

P(K2≥k)  

0.050

0.010          

0.001           

K

3.841     

6.635    

10.828   

K2=

3、

如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.

(Ⅰ)证明:直线CE∥平面PAB;

(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.

4、设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 =

(Ⅰ)求点P的轨迹方程;

(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

5、已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.

(Ⅰ)求a;

(Ⅱ)证明:f(x)存在唯一的极大值点x0 , 且e﹣2<f(x0)<2﹣2

6、在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.

(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;

(Ⅱ)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值.

7、已知a>0,b>0,a3+b3=2,证明:

(Ⅰ)(a+b)(a5+b5)≥4;

(Ⅱ)a+b≤2.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年高考理数真题试卷(新课标Ⅱ卷)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;