2017年高考数学真题试卷(浙江卷)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共10小题,每小题5分,满分50分)(共10小题)

1、已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=(    )

A . (﹣1,2) B . (0,1) C . (﹣1,0) D . (1,2)
2、椭圆 + =1的离心率是(    )

A . B . C . D .
3、

某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(    )

A . +1 B . +3 C . +1 D . +3
4、若x、y满足约束条件 ,则z=x+2y的取值范围是(    )

A . [0,6] B . [0,4] C . [6,+∞) D . [4,+∞)
5、若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m(    )

A . 与a有关,且与b有关 B . 与a有关,但与b无关 C . 与a无关,且与b无关 D . 与a无关,但与b有关
6、已知等差数列{an}的公差为d,前n项和为Sn , 则“d>0”是“S4+S6>2S5”的(    )

A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
7、

函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(    )


A . B . C . D .
8、已知随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2 ,则(    )

A . E(ξ1)<E(ξ2),D(ξ1)<D(ξ2 B . E(ξ1)<E(ξ2),D(ξ1)>D(ξ2 C . E(ξ1)>E(ξ2),D(ξ1)<D(ξ2 D . E(ξ1)>E(ξ2),D(ξ1)>D(ξ2
9、

如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB, = =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则(    )

A . γ<α<β B . α<γ<β C . α<β<γ D . β<γ<α
10、

如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1= ,I2= ,I3= ,则(    )

A . I1<I2<I3 B . I1<I3<I2 C . I3<I1<I2 D . I2<I1<I3

二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分(共7小题)

1、我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6 , S6=      

2、已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=      ,ab=      

3、已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5 , 则a4=      ,a5=      

4、已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是      ,cos∠BDC=      

5、已知向量 满足| |=1,| |=2,则| + |+| |的最小值是      ,最大值是      

6、从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有      种不同的选法.(用数字作答)

7、已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是      

三、解答题(共5小题,满分74分)(共5小题)

1、已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).

(Ⅰ)求f( )的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

2、

如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

3、已知函数f(x)=(x﹣ )e﹣x(x≥ ).

(Ⅰ)求f(x)的导函数;

(Ⅱ)求f(x)在区间[ ,+∞)上的取值范围.

4、

如图,已知抛物线x2=y,点A(﹣ ),B( ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|PA|•|PQ|的最大值.

5、已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,

(Ⅰ)0<xn+1<xn

(Ⅱ)2xn+1﹣xn

(Ⅲ) ≤xn

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年高考数学真题试卷(浙江卷)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;