2017年高考文数真题试卷(天津卷)
年级:高考 学科:数学 类型: 来源:91题库
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(共8小题)




阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为( )






















二、填空题:本大题共6小题,每小题5分,共30分.(共6小题)

程为 .







三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(共6小题)

(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?
(I)求异面直线AP与BC所成角的余弦值;
(II)求证:PD⊥平面PBC;
(II)求直线AB与平面PBC所成角的正弦值.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nbn}的前n项和(n∈N*).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0 , y0)处有相同的切线,
(i)求证:f(x)在x=x0处的导数等于0;
(ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.



(I)求椭圆的离心率;
(II)设点Q在线段AE上,|FQ|= c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.