2017年浙江省金华市中考数学试卷
年级:中考 学科:数学 类型:中考真卷 来源:91题库
一、选择题(本题有10小题,每小题3分,共30分)(共10小题)





一个几何体的三视图如图所示,这个几何体是( )


如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )





如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A,B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需再安装一个监控探头,则安装的位置是( )
二、填空题 (本题有6小题,每小题4分,共24分)(共6小题)


宜居城市 | 大连 | 青岛 | 威海 | 金华 | 昆明 | 三亚 |
最高气温(℃) | 25 | 28 | 35 | 30 | 26 | 32 |
则以上最高气温的中位数为 ℃.
如图,已知l1//l2 , 直线l与l1 , l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= °.
如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为 .
在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).
①如图1,若BC=4m,则S= m.
②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为 m.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)(共8小题)

(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).



(本题8分)某校为了解学生体质情况,从各年级学生中随机抽取部分学生进行体能测试.
每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制 成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:
(本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式 ,已知点O与球网的水平距离为5m,球网的高度1.55m.


(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.
①求∠OCE的度数.
②若⊙O的半径为2 ,求线段EF的长.
如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩 形,这样的矩形称为叠合矩形.
如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,3 ),B(9,5
),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA−AB−BC运动,在OA,AB,BC上运动的速度分别为3,
,
(单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.