2017年江苏省苏州市吴中区中考数学一模试卷

年级:中考 学科:数学 类型:中考模拟 来源:91题库

一、选择题(共10小题)

1、实数 的值在(   )
A . 0和1之间 B . 1和2之间 C . 2和3之间 D . 3和4之间
2、2的相反数是(   )
A . ﹣2 B . C . 2 D .
3、年初,工信部官网发布了2016年通信运营业统计公报,数据显示,2016年,4G用户数呈爆发式增长,全年新增3.4亿户,总数达到770 000 000亿户,将770 000 000用科学记数法表示应为(   )
A . 0.77×109 B . 7.7×107 C . 7.7×108 D . 7.7×109
4、把x2y﹣y分解因式,正确的是(   )
A . y(x2﹣1) B . y(x+1) C . y(x﹣1) D . y(x+1)(x﹣1)
5、函数y= 中,x的取值范围是(   )
A . x≠0 B . x>﹣2 C . x<﹣2 D . x≠﹣2
6、一组数据:10,15,10,17,18,20.对于这组数据,下列说法错误的是(   )
A . 平均数是15 B . 众数是10 C . 中位数是17 D . 方差是
7、

如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为(   )

A . 5米 B . 6米 C . 8米 D . (3+ )米
8、如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)(   )

A . 16 B . 24﹣4π C . 32﹣4π D . 32﹣8π
9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:

①2a+b=0;

②当﹣1≤x≤3时,y<0;

③若(x1 , y1)、(x2 , y2)在函数图象上,当x1<x2时,y1<y2

④9a+3b+c=0

其中正确的是(   )

A . ①②④ B . ①②③ C . ①④ D . ③④
10、如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则 等于(   )

A . B . C . D .

二、填空题(共8小题)

1、计算:a2•a3=      
2、如图,直线l1∥l2 , 直线l3与l1、l2分别交于A、B两点,若∠1=70°,则∠2=      

3、某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为      

4、若2a﹣3b2=5,则6﹣2a+3b2=      
5、如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为      

6、

如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△       0(填:“>”或“=”或“<”).

7、如图,二次函数Y=﹣ x2 x+2象与x轴交于A、B两点,与y轴交于C点,点D(m,n)是抛物线在第二象限的部分上的一动点,则四边形OCDA的面积的最大值是      

8、

如图,在平面直角坐标系xOy中,直线y= x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为      

三、解答题(共10小题)

1、计算: +|﹣5|.
2、解不等式组
3、先化简,再求值:( ﹣x+1)÷ ,其中x= ﹣2.
4、本学期开学前夕,苏州某文具店用4000元购进若干书包,很快售完,接着又用4500元购进第二批书包,已知第二批所购进书包的只数是第一批所购进书包的只数的1.5倍,且每只书包的进价比第一批的进价少5元,求第一批书包每只的进价是多少?
5、甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之积能被2整除的概率.
6、如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.

(1)求证:△ACD≌△BCE;
(2)若∠D=53°,求∠B的度数.
7、

如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

8、如图,AB是⊙O的直径,BC是弦,过点O作OE⊥BC于H交⊙O于E,在OE的延长线上取一点D,使∠ODB=∠AEC,AE与BC交于F.

(1)判断直线BD与⊙O的位置关系,并给出证明;
(2)当⊙O的半径是5,BF=2 ,EF= 时,求CE及BH的长.
9、

如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.

(1)求抛物线的解析式以及顶点坐标;

(2)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BC,BE,求∠CBE的正切值;

(3)在(2)的条件下,点M是抛物线对称轴上且在CE上方的一点,是否存在点M使△DMB和△BCE相似?若存在,求点M坐标;若不存在,请说明理由.

10、如图,在矩形ABCD中,AB=6,BC=8,动点Q从点A出发,沿着AB方向以1个单位长度/秒的速度匀速运动,同时动点P从点B出发,沿着对角线BD方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5),以P为圆心,PB长为半径的⊙P与BD、AB的另一个交点分别为E、F,连结EF、QE.

 

(1)填空:FB=      (用t的代数式表示);
(2)当t为何值时,点Q与点F相遇?
(3)当线段QE与⊙P有两个公共点时,求t的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年江苏省苏州市吴中区中考数学一模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;