2017年江西省赣州市高考数学二模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知复数z满足(1﹣i)2•z=1+2i,则在复平面内复数 对应的点为(   )
A . B . C . D .
2、已知集合P={x|x2﹣2x﹣8≤0},Q={x|x≥a},(∁RP)∪Q=R,则a的取值范围是(   )
A . (﹣2,+∞) B . (4,+∞) C . (﹣∞,﹣2] D . (﹣∞,4]
3、对于下列说法正确的是(   )
A . 若f(x)是奇函数,则f(x)是单调函数 B . 命题“若x2﹣x﹣2=0,则x=1”的逆否命题是“若x≠1,则x2﹣x﹣2=0” C . 命题p:∀x∈R,2x>1024,则¬p:∃x0∈R, D . 命题“∃x∈(﹣∞,0),2x<x2”是真命题
4、如图,ABCD是以O为圆心、半径为2的圆的内接正方形,EFGH是正方形ABCD的内接正方形,且E、F、G、H分别为AB、BC、CD、DA的中点.将一枚针随机掷到圆O内,用M表示事件“针落在正方形ABCD内”,N表示事件“针落在正方形EFGH内”,则P(N|M)=(   )

A . B . C . D .
5、函数 (其中e是自然对数的底数)的大致图象为(   )
A . B . C . D .
6、已知双曲线 的离心率为 ,则抛物线x2=4y的焦点到双曲线的渐近线的距离是(   )
A . B . C . D .
7、正方体ABCD﹣A1B1C1D1的棱长为1,点E,F分别是棱D1C1 , B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1 , 则平面α截正方体的表面所得平面图形为(   )
A . 三角形 B . 四边形 C . 五边形 D . 六边形
8、已知公差不为0的等差数列{an}与等比数列 ,则{bn}的前5项的和为(   )
A . 142 B . 124 C . 128 D . 144
9、如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿间的距离为(   )

A . 海里 B . 海里 C . 海里 D . 40海里
10、已知动点A(xA , yA)在直线l:y=6﹣x上,动点B在圆C:x2+y2﹣2x﹣2y﹣2=0上,若∠CAB=30°,则xA的最大值为(   )
A . 2 B . 4 C . 5 D . 6
11、已知函数f(x)=x+exa ,其中e为自然对数的底数,若存在实数x0 , 使f(x0)﹣g(x0)=4成立,则实数a的值为(   )
A . n2﹣1 B . 1﹣1n2 C . 1n2 D . ﹣1n2
12、执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=(   )

A . 4 B . 5 C . 6 D . 7

二、填空题(共4小题)

1、已知向量 =(1,﹣2), ,|2 |=5,则| |=      
2、若 的展开式中存在常数项,则常数项为      
3、某多面体的三视图如图所示,则该多面体外接球的体积为      

4、如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于小矩形与大矩形的面积之间,即 .类比之,若对∀n∈N+ , 不等式 恒成立,则实数k等于      

三、解答题(共7小题)

1、已知函数f(x)=sinωxcosωx﹣ (ω>0)图象的两条相邻对称轴为
(1)求函数y=f(x)的对称轴方程;
(2)若函数y=f(x)﹣ 在(0,π)上的零点为x1 , x2 , 求cos(x1﹣x2)的值.
2、如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,

(1)证明:DC⊥AB;
(2)若点C在平面ABDE内的射影H,求CH与平面BCD所成的角的正弦值.
3、

如图,椭圆 的离心率为 ,顶点为A1、A2、B1、B2 , 且

(1)求椭圆C的方程;

(2)P是椭圆C上除顶点外的任意点,直线B2P交x轴于点Q,直线A1B2交A2P于点E.设A2P的斜率为k,EQ的斜率为m,试问2m﹣k是否为定值?并说明理由.

4、已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.
5、在直角坐标系xOy中,直线 (t为参数, )与圆C:x2+y2﹣2x﹣4x+1=0相交于点A,B,以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)求 的最大值.
6、已知函数f(x)=m﹣|2﹣x|,且f(x+2)>0的解集为(﹣1,1).
(1)求m的值;
(2)若正实数a,b,c,满足a+2b+3c=m.求 的最小值.
7、某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:

(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:

等级

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年江西省赣州市高考数学二模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;