2017年山东省临沂市中考数学模拟试卷(一)

年级:中考 学科:数学 类型:中考模拟 来源:91题库

一、选择题 (共13小题)

1、﹣ 的相反数是(   )
A . 2 B . ﹣2 C . D .
2、一个两边平行的纸条,如图那样折叠一下,则∠1的度数是(   )

A . 30° B . 40° C . 50° D . 60°
3、下列各式计算正确的是(   )
A . a2+a2=a4 B . (﹣2x)3=﹣8x3 C . a3•a4=a12 D . (x﹣3)2=x2﹣9
4、下面四个手机应用图标中是轴对称图形的是(   )
A . B . C . D .
5、某校九年级一班学生参加体育考试,第一小组学生引体向上的成绩如表所示:

引体向上的个数

7

8

9

10

人数

2

1

4

5

则这组学生引体向上个数的众数和中位数分别为(   )

A . 10和9 B . 9和10 C . 10和9.5 D . 9.5和10
6、不等式组 的整数解有(   )
A . 3个 B . 4个 C . 5个 D . 6个
7、在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为(   )
A . B . C . D .
8、当x=3时,分式( ﹣x﹣1)÷ 的值为(   )
A . B . C . D .
9、如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是弧BAC上一点,连结CD.则∠D的度数是(   )

A . 50° B . 45° C . 40° D . 35°
10、

如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A的距离是(   )

A . 15 km B . 15 km C . 15( + )km D . 5( +3 )km
11、如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有(   )

A . 1个 B . 2个 C . 3个 D . 4个
12、

如图,已知动点P在函数y= (x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,则AF•BE的值为(   )

A . 4 B . 2 C . 1 D .
13、

如图,已知△ABC中,AB=AC=2,∠B=30°,P是BC边上一个动点,过点P作PD⊥BC,交△ABC的AB边于点D.若设PD为x,△BPD的面积为y,则y与x之间的函数关系的图象大致是(   )

A . B . C . D .

二、填空题 (共5小题)

1、因式分解:3x2y﹣27y=      
2、某药品原价是95元,经连续两次降价后,价格变为60.8元,如果每次降价的百分率是一样的,那么每次降价的百分率是      
3、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是      

4、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为      

5、已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2 , 周长记作C1;再作第二个正方形A2B2C2A3 , 周长记作C2;继续作第三个正方形A3B3C3A4 , 周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=      

三、.解答题 (共7小题)

1、

如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

(1)请直接写出线段AF,AE的数量关系      

(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;

(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

2、计算:﹣32+6cos45°﹣ (2﹣ )+| ﹣3|.
3、为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
4、如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.

(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
5、如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.

(1)求证:MN是⊙O的切线;
(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.
6、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

每台甲型收割机的租金

每台乙型收割机的租金

A地区

1800

1600

B地区

1600

1200

(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
7、

如图,抛物线y=﹣ x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).

(1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年山东省临沂市中考数学模拟试卷(一)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;