2017年山西省吕梁市孝义市高考数学热身试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题:(共12小题)

1、已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},则集合A∩B=(   )
A . {1,2} B . {x|0≤x≤1} C . {(1,2)} D .
2、已知复数z是一元二次方程x2﹣2x+2=0的一个根,则|z|的值为(   )
A . 1 B . C . 0 D . 2
3、已知等差数列{an},S3=6,a9+a11+a13=60,则S13的值为(   )
A . 66 B . 42 C . 169 D . 156
4、设a=(1﹣2x)dx,则二项式( x2+ 6的常数项是(   )

A . 240 B . ﹣240 C . ﹣60 D . 60
5、大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,则其中2人恰好乘坐同一部电梯的概率为(   )
A . B . C . D .
6、《九章算术》中记载了一种标准量器﹣﹣﹣商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为(   )立方寸.(π≈3.14)

A . 12.656 B . 13.667 C . 11.414 D . 14.354
7、已知函数y=f(x),满足y=f(﹣x)和y=f(x+2)是偶函数,且f(1)= ,设F(x)=f(x)+f(﹣x),则F(3)=(   )
A . B . C . π D .
8、已知抛物线y2=2px(p>0),过点C(﹣4,0)作抛物线的两条切线CA,CB,A,B为切点,若直线AB经过抛物线y2=2px的焦点,△CAB的面积为24,则以直线AB为准线的抛物线标准方程是(   )
A . y2=4x B . y2=﹣4x C . y2=8x D . y2=﹣8x
9、根据下边流程图输出的值是(   )

A . 11 B . 31 C . 51 D . 79
10、在长方体ABCD﹣A1B1C1D1中,AA1=A1D1=a,A1B1=2a,点P在线段AD1上运动,当异面直线CP与BA1所成的角最大时,则三棱锥C﹣PA1D1的体积为(   )
A . B . C . D . a3
11、已知函数f(x)=sin(ωx+φ)(ω>0,φ∈[﹣ ,0])的周期为π,将函数f(x)的图象沿着y轴向上平移一个单位得到函数g(x)图象,设g(x)<1,对任意的x∈(﹣ ,﹣ )恒成立,当φ取得最小值时,g( )的值是(   )
A . B . 1 C . D . 2
12、已知函数 ,有下列四个命题:

①函数f(x)是奇函数;

②函数f(x)在(﹣∞,0)∪(0,+∞)是单调函数;

③当x>0时,函数f(x)>0恒成立;

④当x<0时,函数f(x)有一个零点,

其中正确的个数是(   )

A . 1 B . 2 C . 3 D . 4

二、填空题(共4小题)

1、对于正整数n,设xn是关于x的方程nx3+2x﹣n=0的实数根,记an=[(n+1)xn](n≥2),其中[x]表示不超过实数x的最大整数,则 (a2+a3+…+a2015)=      
2、共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务,现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取法种数是      
3、如图所示,在南海上有两座灯塔A,B,这两座灯座之间的距离为60千米,有个货船从岛P处出发前往距离120千米岛Q处,行驶至一半路程时刚好到达M处,恰好M处在灯塔A的正南方,也正好在灯塔B的正西方,向量 ,则 =      

4、若x,y满足约束条件 ,设x2+y2+4x的最大值点为A,则经过点A和B(﹣2,﹣3)的直线方程为      

三、解答题(共7小题)

1、已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=﹣sinAsinB,sin(A﹣B)=cos(A+B).
(1)求角A、B、C;
(2)若a= ,求三角形ABC的边长b的值及三角形ABC的面积.
2、某研究所设计了一款智能机器人,为了检验设计方案中机器人动作完成情况,现委托某工厂生产500个机器人模型,并对生产的机器人进行编号:001,002,…,500,采用系统抽样的方法抽取一个容量为50的机器人样本,试验小组对50个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数据如图所示,请据此回答如下问题:

分组

机器人数

频率

[50,60)

0.08

[60,70)

10

[70,80)

10

[80,90)

[90,100]

6

(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为003,这500个机器人分别放在A,B,C三个房间,从001到200在A房间,从201到355在B房间,从356到500在C房间,求B房间被抽中的人数是多少?
(3)从动作个数不低于80的机器人中随机选取2个机器人,该2个机器人中动作个数不低于90的机器人记为ξ,求ξ的分布列与数学期望.
3、在正三角形ABC中,E、F、P分别是﹣AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图2).

(1)求证:A1E⊥平面BEP;
(2)求二面角B一A1P一F的余弦值的大小.
4、设椭圆 的左顶点为(﹣2,0),且椭圆C与直线 相切,

(1)求椭圆C的标准方程;

(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得 ?请说明理由.

5、已知函数f(x)=x2eax﹣1(a是常数),
(1)求函数y=f(x)的单调区间:
(2)当x∈(0,16)时,函数f(x)有零点,求a的取值范围.
6、已知在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的参数方程为: ,曲线C2的极坐标方程为:ρ2(1+sin2θ)=8,
(1)写出C1和C2的普通方程;
(2)若C1与C2交于两点A,B,求|AB|的值.
7、已知函数
(1)若f(x)≥﹣|x|+a恒成立,求实数a的取值范围;
(2)若对于实数x,y,有|x+y+1|≤ ,|y﹣ |≤ ,求证:f(x)≤
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年山西省吕梁市孝义市高考数学热身试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;