2017年北京市朝阳区高考数学二模试卷(文科)

年级:高三 学科:数学 类型: 来源:91题库

一、选择题:(共8小题)

1、已知i为虚数单位,则复数z=(1+i)i对应的点位于(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
2、已知x>y,则下列不等式一定成立的是(   )
A . B . log2(x﹣y)>0 C . x3<y3 D .
3、执行如图所示的程序框图,则输出的S值是(   )

A . 15 B . 29 C . 31 D . 63
4、“x>0,y>0”是“ ”的(   )
A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
5、将函数f(x)=cos2x图象上所有点向右平移 个单位长度后得到函数g(x)的图象,若g(x)在区间[0,a]上单调递增,则实数a的最大值为(   )
A . B . C . D .
6、已知过定点P(2,0)的直线l与曲线 相交于A,B两点,O为坐标原点,当△AOB的面积最大时,直线l的倾斜角为(   )
A . 150° B . 135° C . 120° D . 30°
7、“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是(   )
A . B . C . D . 乙和丙都有可能
8、某三棱锥的三视图如图所示,则该三棱锥最长的棱长为(   )

A . B . C . 3 D .

二、填空题:(共6小题)

1、已知集合A={x|2x﹣1>1},B={x|x(x﹣2)<0},则A∩B=      
2、在平面直角坐标系中,已知点A(﹣1,0),B(1,2),C(3,﹣1),点P(x,y)为△ABC边界及内部的任意一点,则x+y的最大值为      
3、平面向量 满足 ,且| |=2,| |=4,则 的夹角等于      
4、设函数 则f(1)=      ;若f(x)在其定义域内为单调递增函数,则实数a的取值范围是      
5、已知双曲线 与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是      ;该双曲线的渐近线方程为      
6、设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1 , C2之间的距离,记作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,则d(C1 , C2)=      ;若C3:ex﹣2y=0,C4:lnx+ln2=y,则d(C3 , C4)=      

三、解答题:(共6小题)

1、在△ABC中,角A,B,C的对边分别为a,b,c,且a>b>c, c﹣2bsinC=0.

(Ⅰ)求角B的大小;

(Ⅱ)若b= ,c=1,求a和△ABC的面积.

2、已知数列{an}是首项 ,公比 的等比数列.设 (n∈N*).

(Ⅰ)求证:数列{bn}为等差数列;

(Ⅱ)设cn=an+b2n , 求数列{cn}的前n项和Tn

3、某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.

(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;

(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;

(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.

4、如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.

(Ⅰ)求证:B1C1∥平面BCD;

(Ⅱ)求三棱锥B﹣C1CD的体积;

(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

5、已知椭圆W: (b>0)的一个焦点坐标为

(Ⅰ)求椭圆W的方程和离心率;

(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=﹣1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.

6、已知函数f(x)=xlnx,g(x)= +x﹣a(a∈R).

(Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1 , y=g(x)在点N处的切线为l2

(ⅰ)当m=e时,若l1⊥l2 , 求a的值;

(ⅱ)若l1∥l2 , 求a的最大值;

(Ⅱ)设函数h(x)=f(x)﹣g(x)在其定义域内恰有两个不同的极值点x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年北京市朝阳区高考数学二模试卷(文科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;