2017年山西省吕梁市孝义市高考数学考前模拟试卷(文科)(5月份)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、已知A,B是半径为 的球面上的两点,过AB作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB的长度是(   )
A . B . 2 C . D . 4
2、已知复数z1= (m∈R)与z2=2i的虚部相等,则复数z1对应的点在(   )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
3、已知曲线y=x3在点(1,1)处的切线与直线ax+y+1=0垂直,则a的值是(   )
A . ﹣1 B . 1 C . D .
4、现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(   )
A . B . C . D .
5、过点P(1,1)且倾斜角为45°的直线被圆(x﹣2)2+(y﹣1)2=2所截的弦长是(   )
A . B . C . D .
6、已知函数f(x)= ,则f(x)的值域是(   )
A . [1,+∞) B . [0,+∞) C . (1,+∞) D . [0,1)∪(1,+∞)
7、定义: =ad﹣bc,如 =1×4﹣2×3=﹣2.当x∈R时, ≥k恒成立,则实数k的取值范围是(   )
A . (﹣∞,﹣3] B . (﹣∞,﹣3) C . (﹣3,+∞) D . [﹣3,+∞)
8、已知某几何体是由两个四棱锥组合而成,若该几何体的正视图、俯视图和侧视图均为如图所示的图形,其中四边形是边长为 的正方形,则该几何体的表面积是(   )

A . 8 B . 4 C . 8 +2 D . 4 +2
9、如果x,y满足 ,则z= 的取值范围是(   )
A . [0,2) B . [0,2] C . [﹣1, ] D . [0,+∞)
10、若| |= ,| |=1,| |= ,且 =0,则 + 的最大值是(   )
A . 1 B . C . D . 3
11、现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品.如图所示的程序框图表示统计20个样本中的优质品,其中m表示每件药材的重量,则图中①,②两处依次应该填的整数分别是(   )

A . 14,19 B . 14,20 C . 15,19 D . 15,20
12、在△ABC中,角A,B,C所对的边分别为a,b,c,且2sinCcosB=2sinA+sinB,c=3ab,则ab的最小值是(   )
A . B . C . D .

二、填空题(共4小题)

1、已知集合A={x|x2﹣x﹣6<0},集合B={x|x≤0},则A∩(∁RB)=      
2、已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,﹣2),则sin2α=      
3、抛物线C:y2=2px(p>0)的焦点为F,E是C的准线上位于x轴上方的一点,直线EF与C在第一象限交于点M,在第四象限交于点N,且|EM|=2|MF|=2,则点N到y轴的距离为      
4、已知函数f(x)=(x+5)(x2+x+a)的图象关于点(﹣2,0)对称,设关于x的不等式f′(x+b)<f′(x)的解集为M,若(1,2)⊆M,则实数b的取值范围是      

三、解答题(共7小题)

1、已知直线l: (其中t为参数,α为倾斜角).以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=
(1)求C的直角坐标方程,并求C的焦点F的直角坐标;
(2)已知点P(1,0),若直线l与C相交于A,B两点,且 =2,求△FAB的面积.
2、数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.

(Ⅰ)写出{an}的前3项,并猜想其通项公式;

(Ⅱ)若各项均为正数的等比数列{bn}满足b1=a1 , b3=a3 , 求数列{n•bn}的前n项和Tn

3、某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表.

印刷册数x(千册)

2

3

4

5

8

单册成本y(元)

3.2

2.4

2

1.9

1.7

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲: 1= +1.1,方程乙: 2= +1.6.

(Ⅰ)为了评价两种模型的拟合效果,完成以下任务.

(i)完成下表(计算结果精确到0.1);

印刷册数x(千册)

2

3

4

5

8

单册成本y(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值 1

 

2.4

2.1

 

1.6

残值 1

 

0

﹣0.1

 

0.1

模型乙

估计值 2

 

2.3

2

1.9

 

残值 2

 

0.1

0

0

 

(ii)分别计算模型甲与模型乙的残差平方和Q1和Q2 , 并通过比较Q1 , Q2的大小,判断哪个模型拟合效果更好.

(Ⅱ)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(Ⅰ)中拟合效果较好的模型计算印刷单册书的成本)

4、如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到△PAD的位置,得到四棱锥P﹣ABCD.点M为线段PC的中点,且BM⊥平面PCD.

(Ⅰ)求证:平面PAD⊥平面ABCD;

(Ⅱ)若四棱锥P﹣ABCD的体积为2 ,求四面体BCDM的体积.

5、已知椭圆E: + =1(a>b>0)的离心率为 ,且过点(1, ).

(Ⅰ)求E的方程;

(Ⅱ)是否存在直线l:y=kx+m相交于P,Q两点,且满足:①OP与OQ(O为坐标原点)的斜率之和为2;②直线l与圆x2+y2=1相切.若存在,求出l的方程;若不存在,请说明理由.

6、已知函数f(x)=xex

(Ⅰ)讨论函数g(x)=af(x)+ex的单调性;

(Ⅱ)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1],求整数m所有可能的值.

7、已知函数f(x)=|x+2|+|x﹣2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,试证:| m﹣ n|≤
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年山西省吕梁市孝义市高考数学考前模拟试卷(文科)(5月份)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;