2017年辽宁省大连市高考数学二模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、若¬(p∧q)为假命题,则(   )
A . p为真命题,q为假命题 B . p为假命题,q为假命题 C . p为真命题,q为真命题 D . p为假命题,q为真命题
2、已知集合A={x|y= },B={x|x2+x>0},则A∩B=(   )
A . {x|x>0} B . {x|x≥0} C . {x|0<x<1} D . {x|x<1}
3、在复平面内,复数z的对应点为(1,﹣2),复数z的共轭复数 ,则( 2=(   )
A . ﹣3﹣4i B . ﹣3+4i C . 5﹣4i D . 5+4i
4、已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=(   )
A . 0.477 B . 0.625 C . 0.954 D . 0.977
5、已知双曲线C: =1(a>0,b>0)的一条渐近线方程为x﹣ay=0,曲线C的一个焦点与抛物线y2=﹣8x的焦点重合,则双曲线的离心率为(   )
A . B . C . 2 D .
6、如图网络纸上小正方形的边长为1,粗实(虚)线画出的是某几何体的三视图,则该几何图的体积为(   )

A . 12 B . 18 C . 20 D . 24
7、牛顿法求方程f(x)=0近似根原理如下:求函数y=f(x)在点(xn , f(xn))处的切线y=f′(xn)(x﹣xn)+f(xn),其与x轴交点横坐标xn+1=xn (n∈N*),则xn+1比xn更靠近f(x)=0的根,现已知f(x)=x2﹣3,求f(x)=0的一个根的程序框图如图所示,则输出的结果为(   )
A . 2 B . 1.75 C . 1.732 D . 1.73
8、已知变量x,y满足约束条件 ,则x2+y2取值范围为(   )
A . [1,8] B . [4,8] C . [1,10] D . [1,16]
9、已知定义在R上的偶函数f(x)在[0,+∞)单调递增,若f(lnx)<f(2),则x的取值范围是(   )
A . (0,e2 B . (e2 , +∞) C . (e2 , +∞) D . (e2 , e2
10、已知函数f(x)=sin(πx+ )和函数g(x)=cos(πx+ )在区间[﹣ ]上的图象交于A,B,C三点,则△ABC的面积是(   )
A . B . C . D .
11、已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为 (球的体积公式为 R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为(   )
A . B . C . D .
12、已知函数f(x)的导函数f′(x),满足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e42xf(x),则下列关于

f(x)的命题正确的是(   )

A . f(3)>e2f(1) B . f(3)<ef(2) C . f(4)<e4f(0) D . f(4)<e5f(﹣1)

二、填空题(共4小题)

1、(x﹣ 4的展开式中的常数项为      
2、已知△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,则角A等于      
3、甲、乙、丙三位同学同时参加M项体育比赛,每项比赛第一名、第二名、第三名得分分别为p1 , p2 , p3(p1>p2>p3 , p1 , p2 , p3∈N*,比赛没有并列名次),比赛结果甲得22分,乙、丙都得9分,且乙有一项得第一名,则M的值为      
4、函数f(x)=2cos (sin cos )+ (ω>0)在区间( ,π)上有且仅有一个零点,则实数ω的范围为      

三、解答题(共7小题)

1、已知数列{an}的前n项和为Sn . 已知a1=2,Sn+1=4an+2.
(1)设bn=an+1﹣2an , 证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
2、某电子产品公司前四年的年宣传费x(单位:千万元)与年销售量y(单位:百万部)的数据如下表所示:

x(单位:千万元)

 1

 2

 3

 4

 y(单位:百万部)

 3

 5

 6

9

可以求y关于x的线性回归方程为 =1.9x+1.

参考公式:回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为:

= =

(1)该公司下一年准备投入10千万元的宣传费,根据所求得的回归方程预测下一年的销售量m:
(2)根据下表所示五个散点数据,求出y关于x的线性回归方程 = x+

 x(单位:千万元)

 1

 2

 3

 4

 10

 y(单位:百万部)

 3

5

 6

 9

m

并利用小二乘法的原理说明 = x+ =1.9x+1的关系.

3、如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD= CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.

(Ⅰ)求证:AO⊥平面BCD;、

(Ⅱ)若三棱锥A﹣BEF的体积为 ,求二面角A﹣BE﹣F的余弦值的绝对值.

4、如图,已知过抛物线E:x2=4y的焦点F的直线交抛物线E与A、C两点,经过点A的直线l1分别交y轴、抛物线E于点D、B(B与C不重合),∠FAD=∠FDA,经过点C作抛物线E的切线为l2

(Ⅰ)求证:l1∥l2

(Ⅱ)求三角形ABC面积的最小值.

5、已知函数f(x)=lnx(x>0).

(Ⅰ)求证:f(x)≥1﹣

(Ⅱ)设g(x)=x2f(x),且关于x的方程x2f(x)=m有两个不等的实根x1 , x2(x1<x2).

(i)求实数m的取值范围;

(ii)求证:x1x22

(参考数据:e=2.718, ≈0.960, ≈1.124, ≈0.769,ln2≈0.693,ln2.6≈0.956,ln2.639≈0.970.注:不同的方法可能会选取不同的数据)

6、以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知曲线C1的参数方程为 ,(α为参数,且α∈[0,π]),曲线C2的极坐标方程为ρ=﹣2sinθ.

(Ⅰ)求C1的极坐标方程与C2的直角坐标方程;

(Ⅱ)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.

7、已知实数a,b,c满足a,b,c∈R+

(Ⅰ)若ab=1,证明:( + 2≥4;

(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年辽宁省大连市高考数学二模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;