2017年陕西省榆林市高考数学三模试卷(理科)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上(  )
A . k2+1 B . (k+1)2 C . D . (k2+1)+(k2+2)+(k2+3)+…+(k+1)2
2、若复数m(m﹣2)+(m2﹣3m+2)i是纯虚数,则实数m的值为(   )
A . 0或2 B . 2 C . 0 D . 1或2
3、若集合A={x|y= },B={x|x≥﹣1},则A∩B等于(   )
A . [﹣1,0] B . [﹣1,1) C . (﹣1,+∞) D . (0,1]
4、函数y=sinx(3sinx+4cosx)(x∈R)的最大值为M,最小正周期为T,则有序数对(M,T)为(   )
A . (5,π) B . (4,π) C . (﹣1,2π) D . (4,2π)
5、已知数列{an}满足a1=15,且3an+1=3an﹣2,若ak•ak+1<0,则正整数k=(   )
A . 21 B . 22 C . 23 D . 24
6、函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则ω,φ的值分别为(   )

A . 2,0 B . 2, C . 2,﹣ D . 2,
7、| |=1,| |= =0,点C在∠AOB内,且∠AOC=30°,设 =m +n (m、n∈R),则 等于(   )
A . B . 3 C . D .
8、一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为 (   )

A . 14 B . 15 C . 16 D . 17
9、将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(   )

A . cm3 B . cm3 C . cm3 D . cm3
10、若双曲线 的一条渐近线与圆x2+(y﹣2)2=2至多有一个交点,则双曲线离心率的取值范围是(   )
A . B . [2,+∞) C . D . (1,2]
11、已知f(x)是定义在R上的奇函数,满足f(﹣ +x)=f( +x),当x∈[0, ]时,f(x)=ln(x2﹣x+1),则函数f(x)在区间[0,6]上的零点个数是(   )
A . 3 B . 5 C . 7 D . 9
12、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为2,则输出的v值为(   )

A . 9×210﹣2 B . 9×210+2 C . 9×211+2 D . 9×211﹣2

二、填空题(共4小题)

1、点P(x0 , y0)是曲线y=3lnx+x+k(k∈R)图象上一个定点,过点P的切线方程为4x﹣y﹣1=0,则实数k的值为      
2、二项式( n的展开式中所有项的二项式系数之和是64,则展开式中的常数项为      
3、设第一象限内的点(x,y)满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为40,则 的最小值为:      
4、已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n⊂α且m不垂直于α,则m不垂直于n.其中正确命题的序号为      

三、解答题(共7小题)

1、已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
2、在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b﹣c)=3ab.

(Ⅰ)求角C的值;

(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.

3、如图,在三棱锥P﹣ABC中,AC=BC=2,∠ACB=90°,侧面PAB为等边三角形,侧棱

(Ⅰ)求证:PC⊥AB;

(Ⅱ)求证:平面PAB⊥平面ABC;

(Ⅲ)求二面角B﹣AP﹣C的余弦值.

4、近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;

(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.

下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式K2= 其中n=a+b+c+d)

5、已知椭圆 (a>b>0)的右焦点为F2(3,0),离心率为e.

(Ⅰ)若 ,求椭圆的方程;

(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2 , BF2的中点.若坐标原点O在以MN为直径的圆上,且 ,求k的取值范围.

6、已知函数f(x)=ex﹣x2+2a+b(x∈R)的图象在x=0处的切线为y=bx.(e为自然对数的底数).

(Ⅰ)求a,b的值;

(Ⅱ)若k∈Z,且f(x)+ (3x2﹣5x﹣2k)≥0对任意x∈R恒成立,求k的最大值.

7、已知直线l的参数方程为 (0≤α<π,t为参数),曲线C的极坐标方程为ρ=

(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;

(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年陕西省榆林市高考数学三模试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;