陕西省咸阳市2016-2017学年高二下学期数学期末考试试卷(文科)
年级:高二 学科:数学 类型:期末考试 来源:91题库
一、选择题(共12小题)
1、命题“∃x0∈R,
”的否定是( )

A . ∀x∈R,x2﹣x﹣1≤0
B . ∀x∈R,x2﹣x﹣1>0
C . ∃x0∈R,
D . ∃x0∈R,


2、记I为虚数集,设a,b∈R,x,y∈I.则下列类比所得的结论正确的是( )
A . 由a•b∈R,类比得x•y∈I
B . 由a2≥0,类比得x2≥0
C . 由(a+b)2=a2+2ab+b2 , 类比得(x+y)2=x2+2xy+y2
D . 由a+b>0⇒a>﹣b,类比得x+y>0⇒x>﹣y
3、若p∧q是假命题,则( )
A . p是真命题,q是假命题
B . p、q均为假命题
C . p、q至少有一个是假命题
D . p、q至少有一个是真命题
4、设函数f(x)可导,则
等于( )

A . f′(1)
B . 3f′(1)
C .
D . f′(3)

5、复数
=( )

A . 2+i
B . 2﹣i
C . 1+2i
D . 1﹣2i
6、已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为( )
A .
=1.5x+2
B .
=﹣1.5x+2
C .
=1.5x﹣2
D .
=﹣1.5x﹣2




7、已知双曲线的方程为
﹣y2=1,则该双曲线的渐近线方程是( )

A . y=±x
B . y=±3x
C . y=±
x
D . y=±
x


8、已知抛物线y2=
x,则它的准线方程为( )

A . y=﹣2
B . y=2
C . x=﹣
D . x=


9、原命题:“设a,b,c∈R,若a>b,则ac2>bc2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A . 0
B . 1
C . 2
D . 4
10、已知方程x2﹣4x+1=0的两根是两圆锥曲线的离心率,则这两圆锥曲线是( )
A . 双曲线、椭圆
B . 椭圆、抛物线
C . 双曲线、抛物线
D . 无法确定
11、已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则函数f(x)的解析式为( )
A . f(x)=x2+8x
B . f(x)=x2﹣8x
C . f(x)=x2+2x
D . f(x)=x2﹣2x
12、函数y=f(x)的图象如图所示,则导函数y=f'(x)的图象可能是( )
A .
B .
C .
D .




二、填空题(共4小题)
1、设i为虚数单位,若2+ai=b﹣3i(a、b∈R),则a+bi= .
2、(如图所示)程序框图能判断任意输入的正整数x是奇数或是偶数.其中判断框内的条件是 .
3、某地区气象台统计,该地区下雨的概率是
,刮风的概率为
,既刮风又下雨的概率为
,设A为下雨,B为刮风,那么P(B|A)等于 .



4、甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市;
由此可判断乙去过的城市为 .
三、解答题(共6小题)
1、求下列函数的导数:
(1)f(x)=(1+sinx)(1﹣4x);
(2)f(x)=
﹣2x .

2、下面(A)(B)(C)(D)为四个平面图形:

(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
交点数 | 边数 | 区域数 | |
(A) | 4 | 5 | 2 |
(B) | 5 | 8 | |
(C) | 12 | 5 | |
(D) | 15 |
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).
3、已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A(x1 , y1)、B(x2 , y2)两点,且直线OA和OB的斜率之和为1,求k的值.
4、已知函数f(x)=
ax2﹣lnx﹣2.

(1)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若a>0,求函数f(x)的单调区间.
5、某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
数学成绩及格 | 数学成绩不及格 | 合计 | |
比较细心 |
|
|
|
比较粗心 |
|
|
|
合计 |
|
|
|
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.
参考数据:独立检验随机变量K2的临界值参考表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
6、已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,
).

(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长(提示:|PQ|=
|x1﹣x2|).
