上海市2017年复旦附中数学高考模拟试卷(5月份)

年级:高考 学科:数学 类型: 来源:91题库

一、一.填空题(共12小题)

1、函数f(x)=lnx+ 的定义域为      
2、若双曲线x2﹣y2=a2(a>0)的右焦点与抛物线y2=4x的焦点重合,则a=      
3、某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为      
4、若方程x2+x+p=0有两个虚根α、β,且|α﹣β|=3,则实数p的值是      
5、盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为      
6、将函数 的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间 上单调递减,则m的最小值为      
7、若 的展开式中含有常数项,则当正整数n取得最小值时,常数项的值为      
8、若关于x,y,z的三元一次方程组 有唯一解,则θ的取值的集合是      
9、若实数x,y满足不等式组 则z=|x|+2y的最大值是      
10、如图,在△ABC中,AB=AC=3,cos∠BAC= =2 ,则 的值为      

11、已知f(x)= 的最大值和最小值分别是M和m,则M+m=      
12、已知四数a1 , a2 , a3 , a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是      

二、二.选择题(共4小题)

1、“x>0,y>0”是“ ”的(   )
A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
2、直线 (t为参数)的倾斜角是(   )
A . B . arctan(﹣2) C . D . π﹣arctan2
3、若一个水平放置的图形的斜二测直观图是一个底角为45°且腰和上底均为1的等腰梯形,则原平面图形的面积是(   )
A . B . C . 2+ D . 1+
4、对数列{an},如果∃k∈N*及λ1 , λ2 , …,λk∈R,使an+k1an+k12an+k2+…+λkan成立,其中n∈N* , 则称{an}为k阶递归数列.给出下列三个结论:

①若{an}是等比数列,则{an}为1阶递归数列;

②若{an}是等差数列,则{an}为2阶递归数列;

③若数列{an}的通项公式为 ,则{an}为3阶递归数列.

其中,正确结论的个数是(   )

A . 0 B . 1 C . 2 D . 3

三、三.简答题(共5小题)

1、若向量 ,在函数 的图象中,对称中心到对称轴的最小距离为 ,且当 的最大值为1.

(Ⅰ)求函数f(x)的解析式;

(Ⅱ)求函数f(x)的单调递增区间.

2、如图,O为总信号源点,A,B,C是三个居民区,已知A,B都在O的正东方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.

(1)求居民区A与C的距离;
(2)现要经过点O铺设一条总光缆直线EF(E在直线OA的上方),并从A,B,C分别铺设三条最短分光缆连接到总光缆EF.假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m(m为常数).设∠AOE=θ(0≤θ<π),铺设三条分光缆的总费用为w(元).

①求w关于θ的函数表达式;

②求w的最小值及此时tanθ的值.

3、如图,在四棱锥P﹣ABCD中,侧棱PA⊥平面ABCD,E为AD的中点,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;

(1)求二面角C﹣PB﹣E的余弦值;
(2)在线段PE上是否存在点M,使得DM∥平面PBC?若存在,求出点M的位置,若不存在,说明理由.
4、如图,在平面直角坐标系xOy中,设点M(x0 , y0)是椭圆C: +y2=1上一点,从原点O向圆M:(x﹣x02+(y﹣y02=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1 , k2

(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)若r= ,①求证:k1k2=﹣ ;②求OP•OQ的最大值.
5、已知m是一个给定的正整数,m≥3,设数列{an}共有m项,记该数列前i项a1 , a2 , …,ai中的最大项为Ai , 该数列后m﹣i项ai+1 , ai+2 , …,am中的最小项为Bi , ri=Ai﹣Bi(i=1,2,3,…,m﹣1);
(1)若数列{an}的通项公式为 (n=1,2,…,m),求数列{ri}的通项公式;
(2)若数列{an}满足a1=1,r1=﹣2(i=1,2,…,m﹣1),求数列{an}的通项公式;
(3)试构造项数为m的数列{an},满足an=bn+cn , 其中{bn}是公差不为零的等差数列,{cn}是等比数列,使数列{ri}是单调递增的,并说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 上海市2017年复旦附中数学高考模拟试卷(5月份)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;