浙江省2017年绍兴市诸暨市数学高考二模试卷

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共10小题)

1、已知复数z满足z(1+i)=2i,则z的共轭复数 等于(   )
A . 1+i B . 1﹣i C . ﹣1+i D . ﹣1﹣i
2、“ >1”是“a<1”的(   )
A . 充分条件但不是必要条件 B . 必要条件但不是充分条件 C . 充要条件 D . 既不是充分条件,也不是必要条件
3、已知实数x,y满足 ,则目标函数z=x﹣y的最小值等于(   )
A . ﹣1 B . ﹣2 C . 2 D . 1
4、二项式(x+ 8展开式的常数项等于(   )
A . C B . C C . 24C D . 22C
5、已知数列{an}的前n项和是Sn , 则下列四个命题中,错误的是(   )
A . 若数列{an}是公差为d的等差数列,则数列{ }的公差为 的等差数列 B . 若数列{ }是公差为d的等差数列,则数列{an}是公差为2d的等差数列 C . 若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列 D . 若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列
6、设双曲线 =1的左,右焦点分别是F1 , F2 , 点P在双曲线上,且满足∠PF2F1=2∠PF1F2=60°,则此双曲线的离心率等于(   )
A . 2 ﹣2 B . C . +1 D . 2 +2
7、已知函数f(x)=sin(2x+ ),将其图象向右平移 ,则所得图象的一条对称轴是(   )
A . x= B . x= C . x= D . x=
8、已知f(x)=x2+3x,若|x﹣a|≤1,则下列不等式一定成立的是(   )
A . |f(x)﹣f(a)|≤3|a|+3 B . |f(x)﹣f(a)|≤2|a|+4 C . |f(x)﹣f(a)|≤|a|+5 D . |f(x)﹣f(a)|≤2(|a|+1)2
9、已知f(x)是定义在R上的单调递增函数,则下列四个命题:

①若f(x0)>x0 , 则f[f(x0)]>x0

②若f[f(x0)]>x0 , 则f(x0)>x0

③若f(x)是奇函数,则f[f(x)]也是奇函数;

④若f(x)是奇函数,则f(x1)+f(x2)=0⇔x1+x2=0,其中正确的有(   )

A . 4个 B . 3个 C . 2个 D . 1个
10、已知三棱锥A﹣BCD的所有棱长都相等,若AB与平面α所成角等于 ,则平面ACD与平面α所成角的正弦值的取值范围是(   )
A . [ ] B . [ ,1] C . [ + ] D . [ ,1]

二、填空题(共7小题)

1、已知A={x|﹣2≤x≤0},B={x|x2﹣x﹣2≤0},则A∪B=      ,(∁RA)∩B=      
2、已知函数f(x)=x3﹣3x,函数f(x)的图象在x=0处的切线方程是      ;函数f(x)在区间[0,2]内的值域是      
3、

某几何体的三视图如图所示,则该几何体最长的一条棱的长度=      ,体积为      


4、已知实数x,y满足x2+y2﹣6x+8y﹣11=0,则 的最大值=      ,|3x+4y﹣28|的最小值=      
5、用1,2,3,4,5这五个数字组成各位上数字不同的四位数,其中千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1524)的概率=      
6、已知△ABC的面积为8,cosA= ,D为BC上一点, = + ,过点D做AB,AC的垂线,垂足分别为E,F,则 =      
7、已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=      

三、解答题(共5小题)

1、已知△ABC中,角A、B、C所对的边分别为a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范围.
2、如图,四棱锥P﹣ABCD的一个侧面PAD为等边三角形,且平面PAD⊥平面ABCD,四边形ABCD是平行四边形,AD=2,AB=4,BD=2

(1)求证;PA⊥BD
(2)求二面角D﹣BC﹣P的余弦值.
3、已知函数f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0, ),使得f(x0)<0,求实数a的取值范围.
4、

如图,P(x0 , y0)是椭圆 +y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方

(1)当P点坐标为( )时,利用题后定理写出l的方程,并验证l确定是椭圆的切线;

(2)当点P在第一象限运动时(可以直接应用定理)

①求△OPQ的面积

②求直线PQ在y轴上的截距的取值范围.

定理:若点(x0 , y0)在椭圆 +y2=1上,则椭圆在该点处的切线方程为 +y0y=1.

5、已知数列{an}的各项都是正数,a1=1,an+12=an2+ (n∈N*
(1)求证: ≤an<2(n≥2)
(2)求证:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> (n∈N*
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省2017年绍兴市诸暨市数学高考二模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;