2016-2017学年河南省洛阳市高二下学期数学期末考试试卷(文科)

年级:高二 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为(   )
A . 8 B . 4 C . 2 D .
2、设等差数列{an}满足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则(   )
A . S2016=2016,a1008>a1009 B . S2016=﹣2016,a1008>a1009 C . S2016=2016,a1008<a1009 D . S2016=﹣2016,a1008<a1009
3、若i为虚数单位,a、b∈R,且 =b+i,则ab=(   )

A . ﹣1 B . 1 C . ﹣2 D . 2
4、设x>0,由不等式x+ >2,x+ ≥3,x+ ≥4,…,类比推广到x+ ≥n+1,则a=(   )
A . nn B . n2 C . 2n D . n
5、设双曲线 的渐近线方程为3x±2y=0,则a的值为(   )
A . 4 B . 3 C . 2 D . 1
6、用反证法证明“a、b∈N* , 如果a、b能被2017整除,那么a、b中至少有一个能被2017整除”时,假设的内容是(   )
A . a不能被2017整除 B . b不能被2017整除 C . a、b都不能被2017整除 D . a、b中至多有一个能被2017整除
7、为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据

患流感

未患流感

服用药

2

18

未服用药

8

12

根据表中数据,通过计算统计量K2= ,并参考以下临界数据:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此认为“该药物有效”,则该结论出错的概率不超过(   )

A . 0.05 B . 0.025 C . 0.01 D . 0.005
8、已知函数f(x)=lnx﹣3x,则曲线y=f(x)在点(1,f(1))处的切线与坐标轴围成的三角形的面积为(   )
A . 1 B . C . D .
9、若圆的方程为 (θ为参数),直线的方程为 (t为参数),则直线与圆的位置关系是(   )
A . 相交过圆心 B . 相交而不过圆心 C . 相切 D . 相离
10、下列命题中正确的是(   )
A . 命题“∃x0∈R,sinx0>1”的否定是“∀x∈R,sinx>1” B . “若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0” C . 在△ABC中,A>B是sinA>sinB的充分不必要条件 D . 若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假
11、若ab>0且直线ax+by﹣2=0过点P(1,2),则 的最小值为(   )
A . B . 9 C . 5 D . 4
12、若函数f(x)=x2+ax+2b在区间(0,1)和(1,2)内各有一个零点,则 的取值范围是(   )
A . ,1) B . C . D . ,2)

二、填空题(共4小题)

1、将点P的极坐标( )化成直角坐标为      
2、设A、B分别是复数z1、z2 , 在复平面上对应的两点,O为原点,若|z1+z2|=|z1﹣z2|,则∠AOB的大小为      
3、某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的数据得线性回归方程为 = x+ ,其中 =6.5,由此预测当广告费为7百万元时,销售额为      万元.

4、如图,已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , |F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△APF1的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的离心率为      

三、解答题(共6小题)

1、在直角坐标系xOy中,直线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.

(Ⅰ)写出C1的普通方程和C2的直角坐标方程;

(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|﹣|MB||.

2、在△ABC中,角A、B、C的对边分别为a、b、c,已知2cos(B﹣C)﹣1=4cosBcosC.
(1)求A;
(2)若a= ,△ABC的面积为 ,求b+c.
3、已知数列{an}的首项a1=1,且an+1= (n∈N*).
(1)证明:数列{ }是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1 , 求数列{bn}的前n项和Tn
4、如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.

(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.
5、设函数f(x)= ,g(x)=lnx+ (a>0).
(1)求函数f(x)的极值;
(2)若∃x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范围.
6、已知椭圆C的方程为 + =1(a>b>0),双曲线 =1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4

(1)求椭圆C的方程;

(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1 , △BOF的面积为S2 , 当S1=2S2时,求 的值.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年河南省洛阳市高二下学期数学期末考试试卷(文科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;