江西省中等学校2016-2017学年中考模拟数学考试试卷

年级:中考 学科:数学 类型:中考模拟 来源:91题库

一、选择题(共6小题)

1、

按如图所示的方法折纸,下面结论正确的个数(  )

①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.

 

A . 1个 B . 2个 C . 3个 D . 4个
2、实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是(   )

A . a与b B . b与c C . c与d D . a与d
3、下列运算正确的是(   )

A . a2+a2=a4 B . a6÷a3=a2 C . a3×a2=a5 D . (a3b)2=a5b3
4、若α、β是一元二次方程x2+2x﹣6=0的两个不相等的根,则α2﹣2β的值是(   )
A . 10 B . 16 C . ﹣2 D . ﹣10
5、如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是(   )

A . PA,PB,AD,BC B . PD,DC,BC,AB C . PA,AD,PC,BC D . PA,PB,PC,AD
6、

如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的(   )

A . 线段CG B . 线段AG C . 线段AH D . 线段CH

二、填空题(共6小题)

1、据了解2016年11月12日凌晨双“十一”天猫的总成交金额达到1207亿元,1207亿元用科学记数法可表示为      元.

2、如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为      

3、《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”

译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为      

4、一次函数y=﹣2x+4与y= 交于点(m,n),则 =      
5、4二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是      

6、在菱形ABCD中,AB=5,AC=8,点P是AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF沿EF折叠,使点A落在点A'处,当△A'CD是直角三角形时,AP的长为      

三、解答题(共11小题)

1、根据要求回答问题:
(1)解不等式组:
(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.

2、先化简,再求值: ÷ ﹣1,其中a=
3、如图,四边形ABCD是平行四边形,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)
(1)在图1中,过点E作直线EF将四边形ABCD的面积平分;

(2)在图2中,DE=DC,作∠A的平分线AM;

4、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:

奖券种类

紫气东来

花开富贵

吉星高照

谢谢惠顾

出现张数(张)

500

1000

2000

6500

(1)求“紫气东来”奖券出现的频率;
(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由.
5、“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.

(1)求AD的长;
(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
6、随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q• )元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.

(1)当x≥6时,求y与x的函数关系式.
(2)若p=1,q=0.5,求该车行驶的平均速度.
7、我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.

(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,求出所选两个班正好不在同一年级的概率.
8、如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y= (k≠0)的图象经过点A,与OB交于点E.

(1)求出k;
(2)求OE:EB.
9、如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在 上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.

(1)当∠PBA=28°,求∠OAP的度数;
(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;
(3)当点P运动几秒时,△APB为等腰三角形.
10、

已知三个全等的等边三角形如图1所示放置,其中点B、C、E在同一直线上,

(1)写出两个不同类型的结论;

(2)

连接BD,P为BD上的动点(D点除外),DP绕点D逆时针旋转60°到DQ,如图2,连接PC,QE,

①判断CP与QE的大小关系,并说明理由;

②若等边三角形的边长为2,连接AP,在BD上是否存在点P,使AP+CP+DP的值最小,并求最小值.

11、

如图,抛物线y=ax2+bc+c(a>0)的顶点为M,若△MCB为等边三角形,且点C,B在抛物线上,我们把这种抛物线称为“完美抛物线”,已知点M与点O重合,BC=2.

(1)求过点O、B、C三点完美抛物线y1的解析式;

(2)若依次在y轴上取点M1、M2、…Mn分别作等边三角形及完美抛物线y1、y2、…y3 , 其中等边三角形的相似比都是2:1,如图,n为正整数.

①则完美抛物线a,y2=      ,完美抛物线y3=      ;完美抛物线yn=      

②直接写出Bn的坐标      

③判断点B1、B2、…、Bn是否在同一直线,若在,求出直线的解析式,若不在同一直线上,说明理由      

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江西省中等学校2016-2017学年中考模拟数学考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;