福建省漳州市2016-2017学年高考文数二模考试试卷

年级:高考 学科:数学 类型: 来源:91题库

一、选择题:(共12小题)

1、已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁RA)∩B=(  )

A . {﹣2,﹣1} B . {﹣2} C . {﹣2,0,1} D . {0,1}
2、复数 的虚部为(   )
A . B . C . D .
3、在数列{an}中,a1=2,an+1=an+2,Sn为{an}的前n项和,则S10=(   )
A . 90 B . 100 C . 110 D . 130
4、五张卡片上分别写有数字1、2、3、4、5,从这五张卡片中随机抽取2张,则取出的2张卡片上数字之和为奇数的概率为(   )
A . B . C . D .
5、为了得到函数y=cos2x的图象,只要把函数 的图象上所有的点(   )
A . 向右平行移动 个单位长度 B . 向左平行移动 个单位长度 C . 向右平行移动 个单位长度 D . 向左平行移动 个单位长度
6、如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为(   )

A . 2 B . 4 C . 6 D . 8
7、已知函数 ,若 ,则f(1﹣m)=(   )
A . ﹣1 B . ﹣4 C . ﹣9 D . ﹣16
8、如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为(   )

A . B . C . D . 5
9、函数f(x)=(1+cosx)sinx在[﹣π,π]的图象的大致形状是(   )
A . B . C . D .
10、一个小球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下.执行下面的程序框图,则输出的S表示的是(   )

A . 小球第10次着地时向下的运动共经过的路程 B . 小球第11次着地时向下的运动共经过的路程 C . 小球第10次着地时一共经过的路程 D . 小球第11次着地时一共经过的路程
11、若P为可行域 内的一点,过P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为(   )
A . B . C . D .
12、若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[﹣1,+∞)恒成立,则实数a的取值范围是(   )
A . [0,+∞) B . [0,1] C . [0,e] D . [﹣1,0]

二、填空题:(共4小题)

1、甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:

甲说:我不是第三名;

乙说:我是第三名;

丙说:我不是第一名.

若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第一名的是      

2、设向量 ,且 ,则x=      
3、已知双曲线 的离心率等于2,其两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点, ,则p=      
4、设{an}是由正数组成的等比数列,Sn是{an}的前n项和.已知a2a4=16,S3=28,则a1a2…an最大时,n的值为      

三、解答题:(共7小题)

1、已知函数f(x)=|x+a|+|x﹣a|,a∈R.

(Ⅰ)若a=1,求函数f(x)的最小值;

(Ⅱ)若不等式f(x)≤5的解集为A,且2∉A,求a的取值范围.

2、△ABC的内角A,B,C的对边分别为a,b,c,其中b≠c,且bcosB=ccosC,延长线段BC到点D,使得BC=4CD=4,∠CAD=30°,

(Ⅰ)求证:∠BAC是直角;

(Ⅱ)求tan∠D的值.

3、如图1,四边形ABCD是菱形,且∠A=60°,AB=2,E为AB的中点,将四边形EBCD沿DE折起至EDC1B1 , 如图2.

(Ⅰ) 求证:平面ADE⊥平面AEB1

(Ⅱ) 若二面角A﹣DE﹣C1的大小为 ,求三棱锥C1﹣AB1D的体积.

4、漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资.

(I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);

(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:

雕刻量n

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.

(ⅰ)求该雕刻师这10天的平均收入;

(ⅱ)求该雕刻师当天收入不低于300元的概率.

5、已知椭圆 的左,右焦点分别为F1 , F2 , 过F1任作一条与两坐标轴都不垂直的直线,与C交于A,B两点,且△ABF2的周长为8.当直线AB的斜率为 时,AF2与x轴垂直.

(I)求椭圆C的方程;

(Ⅱ)在x轴上是否存在定点M,总能使MF1平分∠AMB?说明理由.

6、已知函数f(x)=aex﹣blnx,曲线y=f(x)在点(1,f(1))处的切线方程为
(1)求a,b;
(2)证明:f(x)>0.
7、在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C的普通方程和极坐标方程;

(Ⅱ)过点P且倾斜角为 的直线l交曲线C于A,B两点,求|AB|.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 福建省漳州市2016-2017学年高考文数二模考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;