江苏省南京师大附中2017年高考数学二模试卷

年级:高考 学科:数学 类型: 来源:91题库

一、填空题(共14小题)

1、已知集合A=(﹣2,1],B=[﹣1,2),则A∪B=      
2、设复数z满足(3+4i)z+5=0(i是虚数单位),则复数z的模为      
3、射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为      
4、如图是一个算法的伪代码,其输出的结果为      

5、在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为      
6、从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为      
7、已知实数x,y满足 ,则当2x﹣y取得最小值时,x2+y2的值为      
8、已知函数f(x)=sinx(x∈[0,π])和函数g(x)= tanx的图象相交于A,B,C三点,则△ABC的面积为      
9、在平面直角坐标系xOy中,P是曲线C:y=ex上的一点,直线l:x+2y+c=0经过点P,且与曲线C在P点处的切线垂直,则实数c的值为      
10、如图,在△ABC中,AB=AC,BC=2, ,若 ,则 =      

11、以知f(x)是定义在区间[﹣1,1]上的奇函数,当x<0时,f(x)=x(x﹣1),则关于m的不等式f(1﹣m)+f(1﹣m2)<0的解集为      
12、在平面直角坐标系xOy中,设点P为圆C:(x﹣1)2+y2=4上的任意一点,点Q(2a,a﹣3)(a∈R),则线段PQ长度的最小值为      
13、公比为q(q≠1)的等比数列a1 , a2 , a3 , a4 , 若删去其中的某一项后,剩余的三项(不改变原有顺序)成等差数列,则所有满足条件的q的取值的代数和为      
14、设常数k>1,函数y=f(x)= ,则f(x)在区间[0,2)上的取值范围为      

二、解答题(共8小题)

1、已知角α的终边上有一点p(1,2),
(Ⅰ)求tan( )的值;
(Ⅱ)求sin(2 )的值.
2、如图,在四棱柱ABCD﹣A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且 ,AD=CD=1.

(1)求证:BD⊥AA1
(2)若E为棱BC的中点,求证:AE∥平面DCC1D1
3、已知椭圆E: (a>b>0)的右准线的方程为x= ,左、右两个焦点分别为F1 ),F2 ).

(1)求椭圆E的方程;
(2)过F1 , F2两点分别作两条平行直线F1C和F2B交椭圆E于C,B两点(C,B均在x轴上方),且F1C+F2B等于椭圆E的短轴的长,求直线F1C的方程.
4、如图扇形AOB是一个观光区的平面示意图,其中∠AOB的圆心角为 ,半径OA为1km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧AC、线段CD及线段BD组成.其中D在线段OB上,且CD∥AO,设∠AOC=θ,

(1)用θ表示CD的长度,并写出θ的取值范围.
(2)当θ为何值时,观光道路最长?
5、已知函数f(x)=x3 (1﹣a)x2﹣3ax+1,a>0.
(1)试讨论f(x)(x≥0)的单调性;
(2)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f(x)≤1;
(3)设(1)中的p的最大值为g(a),求g(a)的最大值.
6、设数列{an}是各项均为正数的等比数列,其前n项和为Sn , 且a1a5=64,S5﹣S3=48.
(1)求数列{an}的通项公式;
(2)设有正整数m,l(5<m<l),使得am , 5a5 , al成等差数列,求m,l的值;
(3)设k,m,l∈N*,k<m<1,对于给定的k,求三个数 5ak , am , al经适当排序后能构成等差数列的充要条件.
7、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判.每局比赛结束时,负的一方在下局当裁判,假设每局比赛中,甲胜乙的概率为 ,甲胜丙、乙胜丙的概率都是 ,各局比赛的结果相互独立,第一局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的分布列和数学期望.
8、已知函数f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求证:alna+blnb+clnc≥(a﹣2)ln2.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江苏省南京师大附中2017年高考数学二模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;