辽宁省营口市盖州四中2017年中考数学模拟试卷(6月份)
年级:中考 学科:数学 类型:中考模拟 来源:91题库
一、选择 (共10小题)
1、若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A . 6,3
B . 6,3
C . 3
,3
D . 6
,3




2、若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2014﹣m2+5m的值是( )
A . 2011
B . 2012
C . 2013
D . 2014
3、移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为( )
A . 3.8×106
B . 3.82×105
C . 3.82×106
D . 3.82×107
4、下列运算正确的是( )
A . x2•x3=x6
B . x2+x2=2x4
C . (﹣2x)2=4x2
D . (﹣2x)2•(﹣3x)3=6x5
5、下列图形中,是轴对称图形,但不是中心对称图形的是( )
A .
B .
C .
D .




6、2015年某中学举行的春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:
成绩(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
这些运动员跳高成绩的中位数和众数分别是( )
A . 1.70m,1.65m
B . 1.70m,1.70m
C . 1.65m,1.60m
D . 3,4
7、若
+|2a﹣b+1|=0,则(b﹣a)2016的值为( )

A . ﹣1
B . 1
C . 52015
D . ﹣52015
8、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=( )
A .
B .
C .
D .




9、如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=
的图象经过A,B两点,则菱形ABCD的面积为( )

A . 2
B . 4
C . 2
D . 4


10、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①c>0;
②若点B(﹣ ,y1)、C(﹣
,y2)为函数图象上的两点,则y1<y2;
③2a﹣b=0;
④ <0,
其中,正确结论的个数是( )
A . 1
B . 2
C . 3
D . 4
二、填空题 (共7小题)
1、小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为 .
2、已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 .
3、若等腰三角形的两条边长分别为7cm和14cm,则它的周长为 cm.
4、若关于x的方程kx2﹣4x﹣1=0有实数根,则k的取值范围是 .
5、如图,矩形ABCD中,AB=2,BC=4,点A,B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是 .
6、如图,边长为2的正方形ABCD内接于⊙O,过点D作⊙O的切线交BA延长线于点E,连接EO,交AD于点F,则EF长为 .
7、如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 , 作正方形A1B1C1B2 , 延长C1B2交直线l于点A2 , 作正方形A2B2C2B3 , 延长C2B3交直线l于点A3 , 作正方形A3B3C3B4 , …,依此规律,则A2016A2017= .
三、解答题 (共8小题)
1、先化简,再求值:
÷
,其中a=﹣3.


2、某数学兴趣小组在全校范围内,对四种沙县小吃:馄饨、拌面、烧麦、芋饺进行“我最喜爱的沙县小吃”调查活动,并随即抽取了50名同学的调查问卷,整理后绘制成如图所示的条形统计图,请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若该校有2000名学生,请估计全校同学中,最喜爱“馄饨”的同学有多少人;
(3)将标号为A,B,C,D的四个完全相同的小球分别代表馄饨、拌面、烧麦、芋饺,并把它们放在一个不透明的口袋中,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树状图的方法,求出恰好两次都摸到“A”的概率.
3、某物流公司承接A,B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.
(1)该物流公司月运输两种货物各多少吨?
(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?
4、某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援,伤员在C处,直升机在A处,伤员离云梯(AP)150米(即CP的长).伤员从C地前往云梯的同时,直升机受到惯性的影响又往前水平行进50米到达B处,此时云梯也移动到BQ位置,已知∠ACP=30°,∠APQ=60°,∠BQI=43°.问:伤员需前行多少米才能够到云梯?(结果保留整数,sin43°=0.68,cos43°=0.73,tan43°=0.93,
≈1.73)

5、如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD,BC于点E,F,连接BE,CE,过点F作FG⊥CE,垂足为G.
(1)当点F是BC的中点时,求证:直线FG与⊙O相切;
(2)若FG∥BE时,求AE的长.
6、某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.
(1)试确定函数关系式y=a(x﹣h)2+k;
(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;
(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?
7、如图1,E为边长为1的正方形ABCD中CD边上的一动点(不含点C、D),以BE为边作图中所示的正方形BEFG.
(1)求∠ADF的度数;
(2)如图2,若BF交AD于点H,连接EH,求证:HB平分∠AHE;
(3)如图3,连接AE、CG,作BM⊥AE于点M,BM交GC于点N,连接DN.当E在CD上运动时,求证:NC=NG.
8、如图,抛物线y=﹣
x2+bx+e与x轴交于点A(﹣3,0)、点B(9,0),与y轴交于点C,顶点为D,连接AD、DB,点P为线段AD上一动点.




(1)求抛物线的解析式;
(2)如图1,过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;
(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,直接写出△PMN为等腰三角形时点P的坐标.