江苏省南京市溧水区2017年中考数学二模试卷
年级:中考 学科:数学 类型:中考模拟 来源:91题库
一、选择题(共6小题)
1、下列计算正确的是( )
A . b5•b5=2b5
B . (an﹣1)3=a3n﹣1
C . a+2a2=3a3
D . (a﹣b)5(b﹣a)4=(a﹣b)9
2、肥皂泡的泡壁厚度大约是0.000 07mm,用科学记数法表示为( )
A . 7×10﹣4
B . 7×10﹣5
C . 0.7×10﹣4
D . 0.7×10﹣5
3、数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为( )
A . 3﹣a
B . ﹣3﹣a
C . a﹣3
D . a+3
4、估计
介于( )

A . 0.6与0.7之间
B . 0.7与0.8之间
C . 0.8与0.9之间
D . 0.9与1之间
5、如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为( )
A . 10
B . 9
C . 8
D . 7
6、如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为( )
A . 2
B . 3
C . 4
D . 5
二、填空题(共10小题)
1、5的算术平方根是 ;将
写成负整数指数幂的形式是

2、计算
的结果是 .

3、设x1x2是方程2x2+nx+m=0的两个根,且x1+x2=4,x1x2=3,则n= .
4、在函数y=
中,自变量x的取值范围是 .

5、方程
=
的解是 .


6、已知(x﹣y﹣3)2+|x+y+2|=0,则x2﹣y2的值是 .
7、若am=6,an=3,则am+2n的值为 .
8、如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是 .
9、如图,在⊙O的内接五边形ABCDE中,∠B+∠E=215°,则∠CAD= °.
10、如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形内一点,若S四边形AEOH=3,S四边形BFOE=4,S四边形CGOF=5,则S四边形DHOG= .
三、解答题(共11小题)
1、解不等式组
,并写出它的整数解.

2、计算
﹣
.


3、某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表.
根据以上信息回答下列问题:
最喜爱的趣味运动项目类型频数分布表:
项目类型 | 频数 | 频率 |
跳长绳 | 25 | a |
踢毽子 | 20 | 0.2 |
背夹球 | b | 0.4 |
拔河 | 15 | 0.15 |
(1)直接写出a= ,b= ;
(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);
(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?
4、如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,过点D作BA的平行线交AC于点O,过点A作BC的平行线交DO的延长线于点E,连接CE.
(1)求证:四边形ADCE是菱形;
(2)作出△ABC外接圆,不写作法,请指出圆心与半径;
(3)若AO:BD=
:2,求证:点E在△ABC的外接圆上.

5、综合题:求下列事件概率
(1)小杨和小姜住在同一个小区,该小区到苏果超市有A、B、C三条路线.
①求小杨随机选择一条路线,恰好是A路线的概率;
②求小杨和小姜两人分别随机选择一条路线去苏果超市,恰好两人选择同一条路线的概率.
(2)有4位顾客在超市中选购4种品牌的方便面.如果每位顾客从4种品牌中随机的选购一种,那么4位顾客选购同一品牌的概率是 ,至少有2位顾客选择的不是同一品牌的概率是 (直接填字母序号)
A. B.(
)3 C.1﹣(
)3 D.1﹣(
)3 .
6、如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径.
7、新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:
家居用品名称 | 单价(元) | 数量(个) | 金额(元) |
挂钟 | 30 | 2 | 60 |
垃圾桶 | 15 | ||
塑料鞋架 | 40 | ||
艺术字画 | a | 2 | 90 |
电热水壶 | 35 | 1 | b |
合计 | 8 | 280 |
(1)直接写出a= ,b= ;
(2)甲居民购买了垃圾桶,塑料鞋架各几个?
(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?
8、某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;
(1)当时间为20s、100s时,该食物的温度分别为 ℃, ℃;
(2)求线段DE所表示的y与x之间的函数表达式;
(3)时间是多少时,该食物的温度最高?最高是多少?
9、如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.
(1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示).
10、已知二次函数y1=a(x﹣2)2+k中,函数y1与自变量x的部分对应值如表:
x | … | 1 | 2 | 3 | 4 | … |
y | … | 2 | 1 | 2 | 5 | … |
(1)求该二次函数的表达式;
(2)将该函数的图象向左平移2个单位长度,得到二次函数y2的图象,分别在y1、y2的图象上取点A(m,n1)B(m+1,n2),试比较n1与n2的大小.
11、【问题探究】
已知:如图①所示,∠MPN的顶点为P,⊙O的圆心O从顶点P出发,沿着PN方向平移.
(1)如图②所示,当⊙O分别与射线PM,PN相交于A、B、C、D四个点,连接AC、BD,可以证得△PAC∽△ ,从而可以得到:PA•P B=P C•P D.
(2)如图③所示,当⊙O与射线PM相切于点A,与射线PN相交于C、D两个点.求证:PA2=PC•PD.
(3)【简单应用】
如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段PA与PE、PF之间的数量关系 ;当PA=4
,EF=2,则PE= .
如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段PA与PE、PF之间的数量关系 ;当PA=4

(4)【拓展延伸】如图⑤所示,在以O为圆心的两个同心圆中,A、B是大⊙O上的任意两点,经过A、B 两点作线段,分别交小⊙O于C、E、D、F四个点.求证:AC•AE=BD•BF.(友情提醒:可直接运用本题上面所得到的相关结论)