2017-2018学年人教版九年级上册数学第二十二章 二次函数 单元复习
年级:九年级 学科:数学 类型:单元试卷 来源:91题库
一、单选题(共10小题)
二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是( )




如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )










二、填空题(共5小题)
①函数的图象不经过第二象限;
②当想x<2时,对应的函数值y<0;
③当x<2时,函数值y随x的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可)
三、解答题(共5小题)
拱桥的形状是抛物线,其函数关系式为 , 当水面离桥顶的高度为
m时,水面的宽度为多少米?
如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).
(1)当100<x<200时,直接写y与x之间的函数关系式
(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?
(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?
已知抛物线的C1顶点为E(﹣1,4),与y轴交于C(0,3).
(1)求抛物线C1的解析式;
(2)如图1,过顶点E作EF⊥x轴于F点,交直线AC于D,点P、Q分别在抛物线C1和x轴上,若Q为(t,0),且以E、D、P、Q为顶点的四边形为平行四边形,求t的值;
(3)如图2,将抛物线C1向右平移一个单位得到抛物线C2 , 直线y=kx+6与y轴交于点H,与抛物线C2交于M、N两个不同点,分别过M、N两点作y轴的垂线,垂足分别为P、Q,当k的值在取值范围内发生变化时,式子+
的值是否发生变化?若不变,请求其值.(解此题时不用相似知识)