2017-2018学年北师大版数学七年级下册同步训练:1.5 平方差公式

年级:七年级 学科:数学 类型:同步测试 来源:91题库

一、单选题(共8小题)

1、下列关系式中,正确的是(  )


A . (a﹣b)2=a2﹣b2  B . (a+b)(a﹣b)=a2﹣b2 C . (a+b)2=a2+b2 D . (a+b)2=a2﹣2ab+b2
2、有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其余两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?(  )

A . 小刚 B . 小明 C . 同样大 D . 无法比较
3、

在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(  )

A . (a+b)2=a2+2ab+b2 B . (a﹣b)2=a2﹣2ab+b2 C . a2﹣b2=(a+b)(a﹣b) D . (a+2b)(a﹣b)=a2+ab﹣2b2
4、如图,从边长为a cm的正方形纸片中剪去一个边长为(a﹣3)cm的正方形(a>3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为(   )

A . 6a cm2 B . (6a+9)cm2 C . (6a﹣9)cm2 D . (a2﹣6a+9)cm2
5、计算下列各式,其结果是4y2﹣1的是(   )
A . (2y﹣1)2 B . (2y+1)(2y﹣1)   C . (﹣2y+1)(﹣2y+1) D . (﹣2y﹣1)(2y+1)
6、若a2﹣b2= ,a﹣b= ,则a+b的值为(   )
A . B . C . D . 2
7、下列各式中不能用平方差公式计算的是(   )
A . (x﹣y)(﹣x+y) B . (﹣x+y)(﹣x﹣y)   C . (﹣x﹣y)(x﹣y) D . (x+y)(﹣x+y)
8、如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为(   )

A . a2+4 B . 2a2+4a C . 3a2﹣4a﹣4 D . 4a2﹣a﹣2

二、填空题(共6小题)

1、若a2﹣b2= ,a﹣b= ,则a+b的值为      
2、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则这个长方形的周长是      

3、已知:(x﹣2)0无意义,请你计算(2x+1)2﹣(2x+5)(2x﹣5)=      
4、已知(x﹣a)(x+a)=x2﹣9,那么a=      
5、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是      (用a、b的代数式表示).

6、你能化简(x﹣1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手,然后归纳出一些方法,分别化简下列各式并填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1根据上述规律,可得(x﹣1)(x99+x98+…+x+1)=      

请你利用上面的结论,完成下面问题:

计算:299+298+297+…+2+1,并判断末位数字是      

三、解答题(共6小题)

1、一个单项式加上多项式x2﹣6x+4后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写3个)

2、如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值

3、一个单项式加上多项式9(x﹣1)2﹣2x﹣5后等于一个整式的平方,试求所有这样的单项式.

4、899×901+1(用乘法公式)

5、已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:
(1)x2+y2
(2)xy.
6、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02  , 12=42﹣22  , 20=62﹣42  , 因此4、12、20都是这种“神秘数”.
(1)28和2012这两个数是“神秘数”吗?试说明理由;
(2)试说明神秘数能被4整除;
(3)两个连续奇数的平方差是神秘数吗?试说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017-2018学年北师大版数学七年级下册同步训练:1.5 平方差公式

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;