2017-2018学年中考数学专题题型复习02:一次函数与反比例函数的综合

年级: 学科:数学 类型: 来源:91题库

一、解答题(共3小题)

1、

如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=

(1)求该反比例函数和一次函数的解析式.

(2)求△BOC的面积.

(3)P是x轴上的点,且△PAC的面积与△BOC的面积相等,求P点的坐标.

2、

如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).

(1)求点A的坐标及反比例函数的表达式;

(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.

3、如图,直线y=x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=

(1)求k的值;

(2)设点N(1,a)是反比例函数y=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

 

二、综合题(共12小题)

1、

如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB= , 反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.

(1)求反比例函数解析式

(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比

2、

如图,反比例函数(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.

(1)求反比例函数和正比例函数的解析式;

(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数(k>0)的图象交于C(x1 , y1),D(x2 , y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.

3、

如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.

(1)求该一次函数的解析式;

(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.

4、

如图,正比例函数y=2x的图象与反比例函数y= 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.

(1)求k的值;

(2)x轴上是否存在一点D , 使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
5、

如图,在平面直角坐标系xOy中,双曲线y= 与直线y=﹣2x+2交于点A(﹣1,a).


(1)求a,m的值;

(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.

6、

如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.

(1)求双曲线解析式;

(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

7、

在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).


(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

8、

如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)

(1)求反比例函数的解析式;

(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

9、

如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,


(1)求反比例函数y= 的解析式;

(2)求cos∠OAB的值;

(3)求经过C、D两点的一次函数解析式.

10、

如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B( ,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

11、如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.
12、

如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函数的解析式;

(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果SBAF=4SDFO , 求点D的坐标.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017-2018学年中考数学专题题型复习02:一次函数与反比例函数的综合

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;