2017-2018学年数学浙教版八年级下册5.3.2 正方形的判定 同步练习
年级: 学科:数学 类型:同步测试 来源:91题库
一、选择题(共4小题)
1、下列命题中,真命题是( )
A . 对角线互相垂直且相等的四边形是正方形
B . 等腰梯形既是轴对称图形又是中心对称图形
C . 圆的切线垂直于经过切点的半径
D . 垂直于同一直线的两条直线互相垂直
2、如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB.DM⊥AN于点M,CN⊥AN于点N,则DM+CN的值为(用含有a的代数式表示)( )


A . a
B .
a
C .
a
D .
a



3、如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为( )
A . 4
B . 3
C . 2
D . 1
4、如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A . 30
B . 34
C . 36
D . 40
二、填空题(共3小题)
1、如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为 度.
2、正方形OA1B1C1、A1A2B2C2、A2A3B3C3 , 按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点An的坐标为
3、如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为
三、解答题(共6小题)
1、如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由
2、如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB, AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形.
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
3、如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
4、如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.
5、如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.
6、如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.