2018年浙江省金华市中考数学冲刺模拟卷(1)
年级: 学科:数学 类型:中考模拟 来源:91题库
一、选择题(共10小题)
如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是( )




如左图,图1表示正六棱柱形状的高式建筑物,图2中的正 六边形部分是从该建筑物的正上方看到的俯视图,P、Q、M、N表示小明在地面上的活动区域.小明想同时看到该建筑物的三个侧面,他应在( )




















二、填空题(共6小题)


年薪/万元 | 25 | 15 | 10 | 6 | 4 |
人数 | 1 | 1 | 3 | 3 | 2 |
则该公司全体员工年薪的中位数是 万元
三、解答题(共8小题)



如图1所示,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).

①求h的值;
②通过计算判断此球能否过网.


①将△ABC向上平移3个单位长度,画出平移后的△A1B1C1 , 写出A1、C1的坐标;②将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1C2 , 求线段B1C1旋转过程中扫过的面积(结果保留π).
①若P在DC边上时,求四边形ABCD关于A、B的等角点P的坐标;
②在①的条件下,将PB沿x轴向右平移m个单位长度(0<m<6)得到线段P′B′,连接P′D,B′D,试用含m的式子表示P′D2+B′D2 , 并求出使P′D2+B′D2取得最小值时点P′的坐标;
③如图4,若点P为四边形ABCD关于A、B的等角点,且点P坐标为(1,t),求t的值;
④以四边形ABCD的一边为边画四边形,所画的四边形与四边形ABCD有公共部分,若在所画的四边形内存在一点P,使点P分别是各相邻两顶点的等角点,且四对等角都相等,请直接写出所有满足条件的点P的坐标.