江苏省无锡市惠山区西漳镇2018届数学中考一模试卷
年级: 学科:数学 类型:中考模拟 来源:91题库
一、单选题(共10小题)
1、﹣5的倒数是( )
A . 5
B . ﹣5
C .
D . ﹣


2、下列图案是轴对称图形的是( )
A .
B .
C .
D .




3、函数y=
中自变量x的取值范围是( )

A . x>1
B . x≥1
C . x≤1
D . x≠1
4、下列计算正确的是( )
A . x+x2=x3
B . 2x-3x=-x
C . (x2)3=x5
D . x6÷x3=x2
5、分式方程
的解为( )

A . x=0
B . x=3
C . x=5
D . x=9
6、下列说法中,正确的是( )
A . 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式
B . 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定
C . 抛掷一个正方体骰子,点数为奇数的概率是
D . “打开电视,正在播放广告”是必然事件

7、如图是某几何体的三视图及相关数据,则该几何体的全面积是( )
A . 15π
B . 24π
C . 20π
D . 10π
8、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2
,E,F分别是AD,CD的中点,连接BE,BF,EF.若四边形ABCD的面积为6,则△BEF的面积为( )

A . 2
B .
C .
D . 3


9、如图,在△ABC中,D为AB边上一点,E为CD中点,AC=
,∠ABC=30°,∠A=∠BED=45°,则BD的长为( )

A .
B .
+1﹣
C .
﹣
D .
﹣1






10、如图,△ABC为⊙O的内接三角形,BC=24 ,
,点D为弧BC上一动点,CE垂直直线OD于点E, 当点D由B点沿弧BC运动到点C时,点E经过的路径长为( )

A .
B .
C .
D .




二、填空题(共8小题)
1、分解因式:x3﹣2x2+x= .
2、“同位角相等”的逆命题是 .
3、如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1 , S2 , S3 , …,Sn , 则Sn的值为 (用含n的代数式表示,n为正整数).
4、据统计,今年无锡 “古运河之光”旅游活动节期间,访问南长历史文化街区的国内外游客约908万人次,908万人次用科学记数法可表示为 人次.
5、已知一元二次方程x2﹣3x﹣6=0有两个实数根x1、x2 , 直线l经过点A(x1+x2 , 0)、B(0,x1•x2),则直线l不经过第 象限.
6、如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC = .
7、已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为 .
8、如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE= .
三、解答题(共10小题)
1、计算
(1)计算6sin60°﹣(
)﹣2﹣


(2)化简:

2、解方程和不等式组
(1)解方程:

(2)解不等式组:

3、已知:如图,平行四边形 ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD ≌ △EOC;
(2)连接AC,DE,当∠B
∠AEB 等于多少度时,四边形ACED是正方形?请说明理由.

4、初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
5、为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?
6、如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
7、重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=
x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
x+
(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:



z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据: ,
,
)
8、已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC
画图操作:
(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)
(2)在(1)的条件下,
①若tan∠APB ,求点P的坐标。
②当点P的坐标为 时,∠APB最大
(3)若在直线y
x+4上存在点P,使得∠APB最大,求点P的坐标

9、如图1,直线AD对应的函数关系式为y=﹣2x﹣2,与抛物线交于点A(在x轴上),点D.抛物线与x轴另一交点为B(3,0),抛物线与y轴交点C(0,﹣6).
(1)求抛物线的解析式;
(2)如图2,连结CD,过点D作x轴的垂线,垂足为点E,直线AD与y轴交点为F,若点P由点D出发以每秒1个单位的速度沿DE边向点E移动,1秒后点Q也由点D出发以每秒3个单位的速度沿DC,CO,OE边向点E移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒,当PQ⊥DF时,求t的值;(图3为备用图)
(3)如果点M是直线BC上的动点,是否存在一个点M,使△ABM中有一个角为45°?如果存在,直接写出所有满足条件的M点坐标;如果不存在,请说明理由.
10、问题提出
(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示).
(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.
(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
(4)如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC=
,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.
